全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Comparative Genomic and Transcriptomic Analyses of LNCaP and C4-2B Prostate Cancer Cell Lines

DOI: 10.1371/journal.pone.0090002

Full-Text   Cite this paper   Add to My Lib

Abstract:

The LNCaP and C4-2B cell lines form an excellent preclinical model to study the development of metastatic castration-resistant prostate cancer, since C4-2B cells were derived from a bone metastasis that grew in nude mice after inoculation with the LNCaP-derived, castration-resistant C4-2 cells. Exome sequencing detected 2188 and 3840 mutations in LNCaP and C4-2B cells, respectively, of which 1784 were found in both cell lines. Surprisingly, the parental LNCaP cells have over 400 mutations that were not found in the C4-2B genome. More than half of the mutations found in the exomes were confirmed by analyzing the RNA-seq data, and we observed that the expressed genes are more prone to mutations than non-expressed genes. The transcriptomes also revealed that 457 genes show increased expression and 246 genes show decreased expression in C4-2B compared to LNCaP cells. By combining the list of C4-2B-specific mutations with the list of differentially expressed genes, we detected important changes in the focal adhesion and ECM-receptor interaction pathways. Integration of these pathways converges on the myosin light chain kinase gene (MLCK) which might contribute to the metastatic potential of C4-2B cells. In conclusion, we provide extensive databases for mutated genes and differentially expressed genes in the LNCaP and C4-2B prostate cancer cell lines. These can be useful for other researchers using these cell models.

References

[1]  Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, et al. (2013) Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 49: 1374–1403. doi: 10.1016/j.ejca.2012.12.027
[2]  Lu-Yao GL, Albertsen PC, Moore DF, Shih W, Lin Y, et al. (2009) Outcomes of localized prostate cancer following conservative management. JAMA 302: 1202–1209. doi: 10.1001/jama.2009.1348
[3]  Rider JR, Sandin F, Andren O, Wiklund P, Hugosson J, et al. (2013) Long-term outcomes among noncuratively treated men according to prostate cancer risk category in a nationwide, population-based study. Eur Urol 63: 88–96. doi: 10.1016/j.eururo.2012.08.001
[4]  Siegel R, DeSantis C, Virgo K, Stein K, Mariotto A, et al. (2012) Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin 62: 220–241. doi: 10.3322/caac.21149
[5]  Spans L, Clinckemalie L, Helsen C, Vanderschueren D, Boonen S, et al. (2013) The genomic landscape of prostate cancer. Int J Mol Sci 14: 10822–10851. doi: 10.3390/ijms140610822
[6]  Haffner MC, Mosbruger T, Esopi DM, Fedor H, Heaphy CM, et al. (2013) Tracking the clonal origin of lethal prostate cancer. J Clin Invest 123: 4918–4922. doi: 10.1172/jci70354
[7]  Sampson N, Neuwirt H, Puhr M, Klocker H, Eder IE (2013) In vitro model systems to study androgen receptor signaling in prostate cancer. Endocr Relat Cancer 20: R49–64. doi: 10.1530/erc-12-0401
[8]  Horoszewicz JS, Leong SS, Chu TM, Wajsman ZL, Friedman M, et al. (1980) The LNCaP cell line–a new model for studies on human prostatic carcinoma. Prog Clin Biol Res 37: 115–132.
[9]  Thalmann GN, Anezinis PE, Chang SM, Zhau HE, Kim EE, et al. (1994) Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res 54: 2577–2581.
[10]  Ianculescu I, Wu DY, Siegmund KD, Stallcup MR (2012) Selective roles for cAMP response element-binding protein binding protein and p300 protein as coregulators for androgen-regulated gene expression in advanced prostate cancer cells. J Biol Chem 287: 4000–4013. doi: 10.1074/jbc.m111.300194
[11]  Pan Y, Kytola S, Farnebo F, Wang N, Lui WO, et al. (1999) Characterization of chromosomal abnormalities in prostate cancer cell lines by spectral karyotyping. Cytogenet Cell Genet 87: 225–232. doi: 10.1159/000015432
[12]  Spans L, Atak ZK, Van Nieuwerburgh F, Deforce D, Lerut E, et al. (2012) Variations in the exome of the LNCaP prostate cancer cell line. Prostate 72: 1317–1327. doi: 10.1002/pros.22480
[13]  Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760. doi: 10.1093/bioinformatics/btp324
[14]  McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: 1297–1303. doi: 10.1101/gr.107524.110
[15]  Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, et al. (2009) Circos: an information aesthetic for comparative genomics. Genome Res 19: 1639–1645. doi: 10.1101/gr.092759.109
[16]  Trapnell C, Roberts A, Goff L, Pertea G, Kim D, et al. (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7: 562–578. doi: 10.1038/nprot.2012.016
[17]  Draghici S, Khatri P, Tarca AL, Amin K, Done A, et al. (2007) A systems biology approach for pathway level analysis. Genome Res 17: 1537–1545. doi: 10.1101/gr.6202607
[18]  Dominissini D, Moshitch-Moshkovitz S, Amariglio N, Rechavi G (2011) Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis 32: 1569–1577. doi: 10.1093/carcin/bgr124
[19]  Liu X, Han S, Wang Z, Gelernter J, Yang BZ (2013) Variant callers for next-generation sequencing data: a comparison study. PLoS One 8: e75619. doi: 10.1371/journal.pone.0075619
[20]  Fu Z, Dozmorov IM, Keller ET (2002) Osteoblasts produce soluble factors that induce a gene expression pattern in non-metastatic prostate cancer cells, similar to that found in bone metastatic prostate cancer cells. Prostate 51: 10–20. doi: 10.1002/pros.10056
[21]  Liu AY, Brubaker KD, Goo YA, Quinn JE, Kral S, et al. (2004) Lineage relationship between LNCaP and LNCaP-derived prostate cancer cell lines. Prostate 60: 98–108. doi: 10.1002/pros.20031
[22]  Oudes AJ, Roach JC, Walashek LS, Eichner LJ, True LD, et al. (2005) Application of Affymetrix array and Massively Parallel Signature Sequencing for identification of genes involved in prostate cancer progression. BMC Cancer 5: 86.
[23]  Trojan L, Schaaf A, Steidler A, Haak M, Thalmann G, et al. (2005) Identification of metastasis-associated genes in prostate cancer by genetic profiling of human prostate cancer cell lines. Anticancer Res 25: 183–191. doi: 10.1016/s1569-9056(05)80090-9
[24]  Xie BX, Zhang H, Wang J, Pang B, Wu RQ, et al. (2011) Analysis of differentially expressed genes in LNCaP prostate cancer progression model. J Androl 32: 170–182. doi: 10.2164/jandrol.109.008748
[25]  Bisoffi M, Klima I, Gresko E, Durfee PN, Hines WC, et al. (2004) Expression profiles of androgen independent bone metastatic prostate cancer cells indicate up-regulation of the putative serine-threonine kinase GS3955. J Urol 172: 1145–1150. doi: 10.1097/01.ju.0000135117.40086.fa
[26]  Weischenfeldt J, Simon R, Feuerbach L, Schlangen K, Weichenhan D, et al. (2013) Integrative genomic analyses reveal an androgen-driven somatic alteration landscape in early-onset prostate cancer. Cancer Cell 23: 159–170. doi: 10.1016/j.ccr.2013.01.002
[27]  Grasso CS, Wu YM, Robinson DR, Cao X, Dhanasekaran SM, et al. (2012) The mutational landscape of lethal castration-resistant prostate cancer. Nature 487: 239–243. doi: 10.1038/nature11125
[28]  Lindberg J, Mills IG, Klevebring D, Liu W, Neiman M, et al. (2013) The mitochondrial and autosomal mutation landscapes of prostate cancer. Eur Urol 63: 702–708. doi: 10.1016/j.eururo.2012.11.053
[29]  Lang GI, Parsons L, Gammie AE (2013) Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast. G3 (Bethesda) 3: 1453–1465. doi: 10.1534/g3.113.006429
[30]  Leach FS, Velasco A, Hsieh JT, Sagalowsky AI, McConnell JD (2000) The mismatch repair gene hMSH2 is mutated in the prostate cancer cell line LNCaP. J Urol 164: 1830–1833. doi: 10.1097/00005392-200011000-00110
[31]  Chen Y, Wang J, Fraig MM, Metcalf J, Turner WR, et al. (2001) Defects of DNA mismatch repair in human prostate cancer. Cancer Res 61: 4112–4121.
[32]  Barbieri CE, Baca SC, Lawrence MS, Demichelis F, Blattner M, et al. (2012) Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44: 685–689. doi: 10.1038/ng.2279
[33]  Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, et al. (2013) Punctuated evolution of prostate cancer genomes. Cell 153: 666–677. doi: 10.1016/j.cell.2013.03.021
[34]  Berger MF, Lawrence MS, Demichelis F, Drier Y, Cibulskis K, et al. (2011) The genomic complexity of primary human prostate cancer. Nature 470: 214–220. doi: 10.1038/nature09744
[35]  Schuster-Bockler B, Lehner B (2012) Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488: 504–507. doi: 10.1038/nature11273
[36]  Fujita A, Gomes LR, Sato JR, Yamaguchi R, Thomaz CE, et al. (2008) Multivariate gene expression analysis reveals functional connectivity changes between normal/tumoral prostates. BMC Syst Biol 2: 106. doi: 10.1186/1752-0509-2-106
[37]  Tohtong R, Phattarasakul K, Jiraviriyakul A, Sutthiphongchai T (2003) Dependence of metastatic cancer cell invasion on MLCK-catalyzed phosphorylation of myosin regulatory light chain. Prostate Cancer Prostatic Dis 6: 212–216. doi: 10.1038/sj.pcan.4500663
[38]  Niggli V, Schmid M, Nievergelt A (2006) Differential roles of Rho-kinase and myosin light chain kinase in regulating shape, adhesion, and migration of HT1080 fibrosarcoma cells. Biochem Biophys Res Commun 343: 602–608. doi: 10.1016/j.bbrc.2006.03.022
[39]  Kaneko K, Satoh K, Masamune A, Satoh A, Shimosegawa T (2002) Myosin light chain kinase inhibitors can block invasion and adhesion of human pancreatic cancer cell lines. Pancreas 24: 34–41. doi: 10.1097/00006676-200201000-00005
[40]  Cui WJ, Liu Y, Zhou XL, Wang FZ, Zhang XD, et al. (2010) Myosin light chain kinase is responsible for high proliferative ability of breast cancer cells via anti-apoptosis involving p38 pathway. Acta Pharmacol Sin 31: 725–732. doi: 10.1038/aps.2010.56
[41]  Fazal F, Gu L, Ihnatovych I, Han Y, Hu W, et al. (2005) Inhibiting myosin light chain kinase induces apoptosis in vitro and in vivo. Mol Cell Biol 25: 6259–6266. doi: 10.1128/mcb.25.14.6259-6266.2005
[42]  Khuon S, Liang L, Dettman RW, Sporn PH, Wysolmerski RB, et al. (2010) Myosin light chain kinase mediates transcellular intravasation of breast cancer cells through the underlying endothelial cells: a three-dimensional FRET study. J Cell Sci 123: 431–440. doi: 10.1242/jcs.053793
[43]  Minamiya Y, Nakagawa T, Saito H, Matsuzaki I, Taguchi K, et al. (2005) Increased expression of myosin light chain kinase mRNA is related to metastasis in non-small cell lung cancer. Tumour Biol 26: 153–157. doi: 10.1159/000086487

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133