Syntaxin 1B, but Not Syntaxin 1A, Is Necessary for the Regulation of Synaptic Vesicle Exocytosis and of the Readily Releasable Pool at Central Synapses
Two syntaxin 1 (STX1) isoforms, HPC-1/STX1A and STX1B, are coexpressed in neurons and function as neuronal target membrane (t)-SNAREs. However, little is known about their functional differences in synaptic transmission. STX1A null mutant mice develop normally and do not show abnormalities in fast synaptic transmission, but monoaminergic transmissions are impaired. In the present study, we found that STX1B null mutant mice died within 2 weeks of birth. To examine functional differences between STX1A and 1B, we analyzed the presynaptic properties of glutamatergic and GABAergic synapses in STX1B null mutant and STX1A/1B double null mutant mice. We found that the frequency of spontaneous quantal release was lower and the paired-pulse ratio of evoked postsynaptic currents was significantly greater in glutamatergic and GABAergic synapses of STX1B null neurons. Deletion of STX1B also accelerated synaptic vesicle turnover in glutamatergic synapses and decreased the size of the readily releasable pool in glutamatergic and GABAergic synapses. Moreover, STX1A/1B double null neurons showed reduced and asynchronous evoked synaptic vesicle release in glutamatergic and GABAergic synapses. Our results suggest that although STX1A and 1B share a basic function as neuronal t-SNAREs, STX1B but not STX1A is necessary for the regulation of spontaneous and evoked synaptic vesicle exocytosis in fast transmission.
References
[1]
Lin RC, Scheller RH (2000) Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol 16: 19–49.
[2]
Rizo J, Südhof TC (2002) Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 3: 641–653.
[3]
Kasai H, Takahashi N, Tokumaru H (2012) Distinct initial SNARE configurations underlying the diversity of exocytosis. Physiol Rev 92: 1915–1964. doi: 10.1152/physrev.00007.2012
[4]
Hata Y, Slaughter CA, Südhof TC (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366: 347–351. doi: 10.1038/366347a0
[5]
Bennett MK, Calakos N, Scheller RH (1992) Syntaxin: a synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 257: 255–259. doi: 10.1126/science.1321498
[6]
Sheng ZH, Rettig J, Takahashi M, Catterall WA (1994) Identification of a syntaxin-binding site on N-type calcium channels. Neuron 13: 1303–1313. doi: 10.1016/0896-6273(94)90417-0
[7]
Pabst S, Hazzard JW, Antonin W, Südhof TC, Jahn R, et al. (2000) Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J Biol Chem 275: 19808–19818. doi: 10.1074/jbc.m002571200
[8]
Inoue a, Obata K, Akagawa K (1992) Cloning and sequence analysis of cDNA for a neuronal cell membrane antigen, HPC-1. J Biol Chem 267: 10613–10619.
[9]
Kushima Y, Fujiwara T, Sanada M, Akagawa K (1997) Characterization of HPC-1 antigen, an isoform of syntaxin-1, with the isoform-specific monoclonal antibody, 14D8. J Mol Neurosci 8: 19–27. doi: 10.1007/bf02736860
[10]
Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, et al. (2002) Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 5: 19–26.
[11]
Schoch S, Deák F, K?nigstorfer A, Mozhayeva M, Sara Y, et al. (2001) SNARE function analyzed in synaptobrevin/VAMP knockout mice. Science 294: 1117–1122. doi: 10.1126/science.1064335
[12]
Mishima T, Fujiwara T, Kofuji T, Akagawa K (2012) Impairment of catecholamine systems during induction of long-term potentiation at hippocampal CA1 synapses in HPC-1/syntaxin 1A knock-out mice. J Neurosci 32: 381–389. doi: 10.1523/jneurosci.2911-11.2012
[13]
Fujiwara T, Mishima T, Kofuji T, Chiba T, Tanaka K, et al. (2006) Analysis of knock-out mice to determine the role of HPC-1/syntaxin 1A in expressing synaptic plasticity. J Neurosci 26: 5767–5776. doi: 10.1523/jneurosci.0289-06.2006
[14]
Fujiwara T, Sanada M, Kofuji T, Mishima T, Kanai-Azuma M, et al. (2009) Phenotype analysis of syntaxin1B knockout mice. Neurosci Res 65: S79. doi: 10.1016/j.neures.2009.09.293
[15]
Mishima T, Fujiwara T, Akagawa K (2002) Reduction of neurotransmitter release by the exogenous H3 domain peptide of HPC-1/syntaxin 1A in cultured rat hippocampal neurons. Neurosci Lett 329: 273–276. doi: 10.1016/s0304-3940(02)00662-6
[16]
Koh S, Yamamoto A, Inoue A, Inoue Y, Akagawa K, et al. (1993) Immunoelectron microscopic localization of the HPC-1 antigen in rat cerebellum. J Neurocytol 22: 995–1005. doi: 10.1007/bf01218356
[17]
Leenders a G, Lopes da Silva FH, Ghijsen WE, Verhage M (2001) Rab3a is involved in transport of synaptic vesicles to the active zone in mouse brain nerve terminals. Mol Biol Cell 12: 3095–3102. doi: 10.1091/mbc.12.10.3095
[18]
Schneggenburger R, Meyer a C, Neher E (1999) Released fraction and total size of a pool of immediately available transmitter quanta at a calyx synapse. Neuron 23: 399–409. doi: 10.1016/s0896-6273(00)80789-8
[19]
Moulder KL, Mennerick S (2005) Reluctant vesicles contribute to the total readily releasable pool in glutamatergic hippocampal neurons. J Neurosci 25: 3842–3850. doi: 10.1523/jneurosci.5231-04.2005
Ramirez DMO, Khvotchev M, Trauterman B, Kavalali ET (2012) Vti1a identifies a vesicle pool that preferentially recycles at rest and maintains spontaneous neurotransmission. Neuron 73: 121–134. doi: 10.1016/j.neuron.2011.10.034
[22]
Raingo J, Khvotchev M, Liu P, Darios F, Li YC, et al.. (2012) VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission. Nat Neurosci 15..
[23]
Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16: 1197–1207. doi: 10.1016/s0896-6273(00)80146-4
[24]
Stevens CF, Tsujimoto T (1995) Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc Natl Acad Sci U S A 92: 846–849. doi: 10.1073/pnas.92.3.846
[25]
Zhou P, Pang ZP, Yang X, Zhang Y, Rosenmund C, et al.. (2012) Syntaxin-1 N-peptide and H(abc)-domain perform distinct essential functions in synaptic vesicle fusion. EMBO J: 1–13.
[26]
Ruiz-Montasell B, Aguado F, Majó G, Chapman ER, Canals JM, et al. (1996) Differential distribution of syntaxin isoforms 1A and 1B in the rat central nervous system. Eur J Neurosci 8: 2544–2552. doi: 10.1111/j.1460-9568.1996.tb01548.x
[27]
Aguado F, Majó G, Ruiz-Montasell B, Llorens J, Marsal J, et al. (1999) Syntaxin 1A and 1B display distinct distribution patterns in the rat peripheral nervous system. Neuroscience 88: 437–446. doi: 10.1016/s0306-4522(98)00247-4
[28]
Gerber SH, Rah J, Min S, Liu X, de Wit H, et al. (2008) Conformational switch of syntaxin-1 controls synaptic vesicle fusion. Science 321: 1507–1510. doi: 10.1126/science.1163174
[29]
Arancillo M, Min S-W, Gerber SH, Munster-Wandowski a, Wu Y-J, et al. (2013) Titration of Syntaxin1 in Mammalian Synapses Reveals Multiple Roles in Vesicle Docking, Priming, and Release Probability. J Neurosci 33: 16698–16714. doi: 10.1523/jneurosci.0187-13.2013
[30]
Pérez-Brangulí F, Muhaisen A, Blasi J (2002) Munc 18a binding to syntaxin 1A and 1B isoforms defines its localization at the plasma membrane and blocks SNARE assembly in a three-hybrid system assay. Mol Cell Neurosci 20: 169–180. doi: 10.1006/mcne.2002.1122
[31]
Prange O, Murphy TH (1999) Correlation of miniature synaptic activity and evoked release probability in cultures of cortical neurons. J Neurosci 19: 6427–6438.
[32]
Xu J, Luo F, Zhang Z, Xue L, Wu X-S, et al.. (2013) SNARE Proteins Synaptobrevin, SNAP-25, and Syntaxin Are Involved in Rapid and Slow Endocytosis at Synapses. Cell Rep: 1–8.
[33]
Ma H, Cai Q, Lu W, Sheng Z-H, Mochida S (2009) KIF5B motor adaptor syntabulin maintains synaptic transmission in sympathetic neurons. J Neurosci 29: 13019–13029. doi: 10.1523/jneurosci.2517-09.2009
[34]
Su Q, Cai Q, Gerwin C, Smith CL, Sheng Z-H (2004) Syntabulin is a microtubule-associated protein implicated in syntaxin transport in neurons. Nat Cell Biol 6: 941–953. doi: 10.1038/ncb1169
[35]
Bronk P, Deák F, Wilson MC, Liu X, Südhof TC, et al. (2007) Differential effects of SNAP-25 deletion on Ca2+ -dependent and Ca2+ -independent neurotransmission. J Neurophysiol 98: 794–806. doi: 10.1152/jn.00226.2007
[36]
Delgado-Martínez I, Nehring RB, S?rensen JB (2007) Differential abilities of SNAP-25 homologs to support neuronal function. J Neurosci 27: 9380–9391. doi: 10.1523/jneurosci.5092-06.2007
[37]
Peng L, Liu H, Ruan H, Tepp WH, Stoothoff WH, et al. (2013) Cytotoxicity of botulinum neurotoxins reveals a direct role of syntaxin 1 and SNAP-25 in neuron survival. Nat Commun 4: 1472. doi: 10.1038/ncomms2462
[38]
Curtis L, Datta P, Liu X, Bogdanova N, Heidelberger R, et al. (2010) Syntaxin 3B is essential for the exocytosis of synaptic vesicles in ribbon synapses of the retina. Neuroscience 166: 832–841. doi: 10.1016/j.neuroscience.2009.12.075
[39]
Curtis LB, Doneske B, Liu X, Thaller C, McNew J a, et al. (2008) Syntaxin 3b is a t-SNARE specific for ribbon synapses of the retina. J Comp Neurol 510: 550–559. doi: 10.1002/cne.21806
[40]
Jurado S, Goswami D, Zhang Y, Molina AJM, Südhof TC, et al. (2013) LTP Requires a Unique Postsynaptic SNARE Fusion Machinery. Neuron 77: 542–558. doi: 10.1016/j.neuron.2012.11.029
[41]
Maximov A, Südhof TC (2005) Autonomous function of synaptotagmin 1 in triggering synchronous release independent of asynchronous release. Neuron 48: 547–554. doi: 10.1016/j.neuron.2005.09.006
[42]
Nishiki T, Augustine GJ (2004) Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons. J Neurosci 24: 6127–6132. doi: 10.1523/jneurosci.1563-04.2004