全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Circular Dichroism and Fluorescence Spectroscopy of Cysteinyl-tRNA Synthetase from Halobacterium salinarum ssp. NRC-1 Demonstrates that Group I Cations Are Particularly Effective in Providing Structure and Stability to This Halophilic Protein

DOI: 10.1371/journal.pone.0089452

Full-Text   Cite this paper   Add to My Lib

Abstract:

Proteins from extremophiles have the ability to fold and remain stable in their extreme environment. Here, we investigate the presence of this effect in the cysteinyl-tRNA synthetase from Halobacterium salinarum ssp. NRC-1 (NRC-1), which was used as a model halophilic protein. The effects of salt on the structure and stability of NRC-1 and of E. coli CysRS were investigated through far-UV circular dichroism (CD) spectroscopy, fluorescence spectroscopy, and thermal denaturation melts. The CD of NRC-1 CysRS was examined in different group I and group II chloride salts to examine the effects of the metal ions. Potassium was observed to have the strongest effect on NRC-1 CysRS structure, with the other group I salts having reduced strength. The group II salts had little effect on the protein. This suggests that the halophilic adaptations in this protein are mediated by potassium. CD and fluorescence spectra showed structural changes taking place in NRC-1 CysRS over the concentration range of 0–3 M KCl, while the structure of E. coli CysRS was relatively unaffected. Salt was also shown to increase the thermal stability of NRC-1 CysRS since the melt temperature of the CysRS from NRC-1 was increased in the presence of high salt, whereas the E. coli enzyme showed a decrease. By characterizing these interactions, this study not only explains the stability of halophilic proteins in extremes of salt, but also helps us to understand why and how group I salts stabilize proteins in general.

References

[1]  Ellis RJ (2013) Assembly chaperones: a perspective. Philos Trans R Soc Lond B Biol Sci 368: 20110398. doi: 10.1098/rstb.2011.0398
[2]  Large AT, Goldberg MD, Lund PA (2009) Chaperones and protein folding in the archaea. Biochem Soc Trans 37: 46–51. doi: 10.1042/bst0370046
[3]  Lund P (2011) Insights into chaperonin function from studies on archaeal thermosomes. Biochem Soc Trans 39: 94–98. doi: 10.1042/bst0390094
[4]  Quinlan RA, Ellis RJ (2013) Chaperones: needed for both the good times and the bad times. Philos Trans R Soc Lond B Biol Sci 368: 20130091. doi: 10.1098/rstb.2013.0091
[5]  Bae E, Phillips GN Jr (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279: 28202–28208. doi: 10.1074/jbc.m401865200
[6]  Evilia C, Hou YM (2006) Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase. Biochemistry 45: 6835–6845. doi: 10.1021/bi0521386
[7]  Kumar S, Nussinov R (2004) Different roles of electrostatics in heat and in cold: adaptation by citrate synthase. Chembiochem 5: 280–290. doi: 10.1002/cbic.200300627
[8]  Piette F, D'Amico S, Struvay C, Mazzucchelli G, Renaut J, et al. Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76: 120–132. doi: 10.1111/j.1365-2958.2010.07084.x
[9]  Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks–a driver for protein function in evolution. Nat Rev Mol Cell Biol 14: 237–248. doi: 10.1038/nrm3542
[10]  Tehei M, Zaccai G (2007) Adaptation to high temperatures through macromolecular dynamics by neutron scattering. FEBS J 274: 4034–4043. doi: 10.1111/j.1742-4658.2007.05953.x
[11]  Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22: 323101. doi: 10.1088/0953-8984/22/32/323101
[12]  Luke KA, Higgins CL, Wittung-Stafshede P (2007) Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J 274: 4023–4033. doi: 10.1111/j.1742-4658.2007.05955.x
[13]  Reed C, Lewis H, Trejo E, Winston VD, Evilia C (2013) Protein Adaptations in Archaea. Archaea 2013: 14. doi: 10.1155/2013/373275
[14]  Karan R, Capes MD, Dassarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8: 4. doi: 10.1186/2046-9063-8-4
[15]  Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86: 155–164. doi: 10.1016/s0301-4622(00)00126-5
[16]  Zhang G, Huihua G, Yi L (2013) Stability of halophilic proteins: from dipeptide attributes to discrimination classifier. Int J Biol Macromol 53: 1–6. doi: 10.1016/j.ijbiomac.2012.10.031
[17]  Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11: 50. doi: 10.1186/1472-6807-11-50
[18]  Zhang G, Ge H (2013) Protein hypersaline adaptation: insight from amino acids with machine learning algorithms. Protein J 32: 239–245. doi: 10.1007/s10930-013-9484-3
[19]  Muller-Santos M, de Souza EM, Pedrosa Fde O, Mitchell DA, Longhi S, et al. (2009) First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta 1791: 719–729. doi: 10.1016/j.bbalip.2009.03.006
[20]  Tannous E, Yokoyama K, You DJ, Koga Y, Kanaya S (2012) A dual role of divalent metal ions in catalysis and folding of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1. FEBS Open Bio 2: 345–352. doi: 10.1016/j.fob.2012.10.003
[21]  Yamaguchi R, Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M (2011) Salt-dependent thermo-reversible alpha-amylase: cloning and characterization of halophilic alpha-amylase from moderately halophilic bacterium, Kocuria varians. Appl Microbiol Biotechnol 89: 673–684. doi: 10.1007/s00253-010-2882-y
[22]  Evilia C, Ming X, Dassarma S, Hou YM (2003) Aminoacylation of an unusual tRNA(Cys) from an extreme halophile. RNA 9: 794–801. doi: 10.1261/rna.5320603
[23]  Taupin CM, Hartlein M, Leberman R (1997) Seryl-tRNA synthetase from the extreme halophile Haloarcula marismortui–isolation, characterization and sequencing of the gene and its expression in Escherichia coli. Eur J Biochem 243: 141–150. doi: 10.1111/j.1432-1033.1997.0141a.x
[24]  Zaccai G, Cendrin F, Haik Y, Borochov N, Eisenberg H (1989) Stabilization of halophilic malate dehydrogenase. J Mol Biol 208: 491–500. doi: 10.1016/0022-2836(89)90512-3
[25]  Christian JH, Waltho JA (1962) Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta 65: 506–508. doi: 10.1016/0006-3002(62)90453-5
[26]  Engel MB, Catchpole HR (2005) A microprobe analysis of inorganic elements in Halobacterium salinarum. Cell Biol Int 29: 616–622. doi: 10.1016/j.cellbi.2005.03.024
[27]  Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, et al. (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97: 12176–12181. doi: 10.1073/pnas.190337797
[28]  Zhang CM, Perona JJ, Hou YM (2003) Amino acid discrimination by a highly differentiated metal center of an aminoacyl-tRNA synthetase. Biochemistry 42: 10931–10937. doi: 10.1021/bi034812u
[29]  Golynskiy MV, Davis TC, Helmann JD, Cohen SM (2005) Metal-induced structural organization and stabilization of the metalloregulatory protein MntR. Biochemistry 44: 3380–3389. doi: 10.1021/bi0480741
[30]  Melo EP, Faria TQ, Martins LO, Goncalves AM, Cabral JM (2001) Cutinase unfolding and stabilization by trehalose and mannosylglycerate. Proteins 42: 542–552. doi: 10.1002/1097-0134(20010301)42:4<542::aid-prot120>3.3.co;2-w
[31]  Newberry KJ, Hou YM, Perona JJ (2002) Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. Embo J 21: 2778–2787. doi: 10.1093/emboj/21.11.2778
[32]  Hauenstein S, Zhang CM, Hou YM, Perona JJ (2004) Shape-selective RNA recognition by cysteinyl-tRNA synthetase. Nat Struct Mol Biol 11: 1134–1141. doi: 10.1038/nsmb849
[33]  Zhang CM, Christian T, Newberry KJ, Perona JJ, Hou YM (2003) Zinc-mediated amino acid discrimination in cysteinyl-tRNA synthetase. J Mol Biol 327: 911–917. doi: 10.1016/s0022-2836(03)00241-9
[34]  Badea MG, DeToma RP, Brand L (1978) Nanosecond relaxation processes in liposomes. Biophys J 24: 197–212. doi: 10.1016/s0006-3495(78)85356-9
[35]  Mozo-Villarias A (2002) Second derivative fluorescence spectroscopy of tryptophan in proteins. J Biochem Biophys Methods 50: 163–178. doi: 10.1016/s0165-022x(01)00181-6
[36]  Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80: 2093–2109. doi: 10.1016/s0006-3495(01)76183-8
[37]  Muino PL, Callis PR (2009) Solvent effects on the fluorescence quenching of tryptophan by amides via electron transfer. Experimental and computational studies. J Phys Chem B 113: 2572–2577. doi: 10.1021/jp711513b
[38]  Ebel C, Faou P, Kernel B, Zaccai G (1999) Relative role of anions and cations in the stabilization of halophilic malate dehydrogenase. Biochemistry 38: 9039–9047. doi: 10.1021/bi9900774
[39]  Vrbka L, Vondrasek J, Jagoda-Cwiklik B, Vacha R, Jungwirth P (2006) Quantification and rationalization of the higher affinity of sodium over potassium to protein surfaces. Proc Natl Acad Sci U S A 103: 15440–15444. doi: 10.1073/pnas.0606959103

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133