[1] | Ellis RJ (2013) Assembly chaperones: a perspective. Philos Trans R Soc Lond B Biol Sci 368: 20110398. doi: 10.1098/rstb.2011.0398
|
[2] | Large AT, Goldberg MD, Lund PA (2009) Chaperones and protein folding in the archaea. Biochem Soc Trans 37: 46–51. doi: 10.1042/bst0370046
|
[3] | Lund P (2011) Insights into chaperonin function from studies on archaeal thermosomes. Biochem Soc Trans 39: 94–98. doi: 10.1042/bst0390094
|
[4] | Quinlan RA, Ellis RJ (2013) Chaperones: needed for both the good times and the bad times. Philos Trans R Soc Lond B Biol Sci 368: 20130091. doi: 10.1098/rstb.2013.0091
|
[5] | Bae E, Phillips GN Jr (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279: 28202–28208. doi: 10.1074/jbc.m401865200
|
[6] | Evilia C, Hou YM (2006) Acquisition of an insertion peptide for efficient aminoacylation by a halophile tRNA synthetase. Biochemistry 45: 6835–6845. doi: 10.1021/bi0521386
|
[7] | Kumar S, Nussinov R (2004) Different roles of electrostatics in heat and in cold: adaptation by citrate synthase. Chembiochem 5: 280–290. doi: 10.1002/cbic.200300627
|
[8] | Piette F, D'Amico S, Struvay C, Mazzucchelli G, Renaut J, et al. Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76: 120–132. doi: 10.1111/j.1365-2958.2010.07084.x
|
[9] | Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks–a driver for protein function in evolution. Nat Rev Mol Cell Biol 14: 237–248. doi: 10.1038/nrm3542
|
[10] | Tehei M, Zaccai G (2007) Adaptation to high temperatures through macromolecular dynamics by neutron scattering. FEBS J 274: 4034–4043. doi: 10.1111/j.1742-4658.2007.05953.x
|
[11] | Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22: 323101. doi: 10.1088/0953-8984/22/32/323101
|
[12] | Luke KA, Higgins CL, Wittung-Stafshede P (2007) Thermodynamic stability and folding of proteins from hyperthermophilic organisms. FEBS J 274: 4023–4033. doi: 10.1111/j.1742-4658.2007.05955.x
|
[13] | Reed C, Lewis H, Trejo E, Winston VD, Evilia C (2013) Protein Adaptations in Archaea. Archaea 2013: 14. doi: 10.1155/2013/373275
|
[14] | Karan R, Capes MD, Dassarma S (2012) Function and biotechnology of extremophilic enzymes in low water activity. Aquat Biosyst 8: 4. doi: 10.1186/2046-9063-8-4
|
[15] | Mevarech M, Frolow F, Gloss LM (2000) Halophilic enzymes: proteins with a grain of salt. Biophys Chem 86: 155–164. doi: 10.1016/s0301-4622(00)00126-5
|
[16] | Zhang G, Huihua G, Yi L (2013) Stability of halophilic proteins: from dipeptide attributes to discrimination classifier. Int J Biol Macromol 53: 1–6. doi: 10.1016/j.ijbiomac.2012.10.031
|
[17] | Siglioccolo A, Paiardini A, Piscitelli M, Pascarella S (2011) Structural adaptation of extreme halophilic proteins through decrease of conserved hydrophobic contact surface. BMC Struct Biol 11: 50. doi: 10.1186/1472-6807-11-50
|
[18] | Zhang G, Ge H (2013) Protein hypersaline adaptation: insight from amino acids with machine learning algorithms. Protein J 32: 239–245. doi: 10.1007/s10930-013-9484-3
|
[19] | Muller-Santos M, de Souza EM, Pedrosa Fde O, Mitchell DA, Longhi S, et al. (2009) First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochim Biophys Acta 1791: 719–729. doi: 10.1016/j.bbalip.2009.03.006
|
[20] | Tannous E, Yokoyama K, You DJ, Koga Y, Kanaya S (2012) A dual role of divalent metal ions in catalysis and folding of RNase H1 from extreme halophilic archaeon Halobacterium sp. NRC-1. FEBS Open Bio 2: 345–352. doi: 10.1016/j.fob.2012.10.003
|
[21] | Yamaguchi R, Tokunaga H, Ishibashi M, Arakawa T, Tokunaga M (2011) Salt-dependent thermo-reversible alpha-amylase: cloning and characterization of halophilic alpha-amylase from moderately halophilic bacterium, Kocuria varians. Appl Microbiol Biotechnol 89: 673–684. doi: 10.1007/s00253-010-2882-y
|
[22] | Evilia C, Ming X, Dassarma S, Hou YM (2003) Aminoacylation of an unusual tRNA(Cys) from an extreme halophile. RNA 9: 794–801. doi: 10.1261/rna.5320603
|
[23] | Taupin CM, Hartlein M, Leberman R (1997) Seryl-tRNA synthetase from the extreme halophile Haloarcula marismortui–isolation, characterization and sequencing of the gene and its expression in Escherichia coli. Eur J Biochem 243: 141–150. doi: 10.1111/j.1432-1033.1997.0141a.x
|
[24] | Zaccai G, Cendrin F, Haik Y, Borochov N, Eisenberg H (1989) Stabilization of halophilic malate dehydrogenase. J Mol Biol 208: 491–500. doi: 10.1016/0022-2836(89)90512-3
|
[25] | Christian JH, Waltho JA (1962) Solute concentrations within cells of halophilic and non-halophilic bacteria. Biochim Biophys Acta 65: 506–508. doi: 10.1016/0006-3002(62)90453-5
|
[26] | Engel MB, Catchpole HR (2005) A microprobe analysis of inorganic elements in Halobacterium salinarum. Cell Biol Int 29: 616–622. doi: 10.1016/j.cellbi.2005.03.024
|
[27] | Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, et al. (2000) Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97: 12176–12181. doi: 10.1073/pnas.190337797
|
[28] | Zhang CM, Perona JJ, Hou YM (2003) Amino acid discrimination by a highly differentiated metal center of an aminoacyl-tRNA synthetase. Biochemistry 42: 10931–10937. doi: 10.1021/bi034812u
|
[29] | Golynskiy MV, Davis TC, Helmann JD, Cohen SM (2005) Metal-induced structural organization and stabilization of the metalloregulatory protein MntR. Biochemistry 44: 3380–3389. doi: 10.1021/bi0480741
|
[30] | Melo EP, Faria TQ, Martins LO, Goncalves AM, Cabral JM (2001) Cutinase unfolding and stabilization by trehalose and mannosylglycerate. Proteins 42: 542–552. doi: 10.1002/1097-0134(20010301)42:4<542::aid-prot120>3.3.co;2-w
|
[31] | Newberry KJ, Hou YM, Perona JJ (2002) Structural origins of amino acid selection without editing by cysteinyl-tRNA synthetase. Embo J 21: 2778–2787. doi: 10.1093/emboj/21.11.2778
|
[32] | Hauenstein S, Zhang CM, Hou YM, Perona JJ (2004) Shape-selective RNA recognition by cysteinyl-tRNA synthetase. Nat Struct Mol Biol 11: 1134–1141. doi: 10.1038/nsmb849
|
[33] | Zhang CM, Christian T, Newberry KJ, Perona JJ, Hou YM (2003) Zinc-mediated amino acid discrimination in cysteinyl-tRNA synthetase. J Mol Biol 327: 911–917. doi: 10.1016/s0022-2836(03)00241-9
|
[34] | Badea MG, DeToma RP, Brand L (1978) Nanosecond relaxation processes in liposomes. Biophys J 24: 197–212. doi: 10.1016/s0006-3495(78)85356-9
|
[35] | Mozo-Villarias A (2002) Second derivative fluorescence spectroscopy of tryptophan in proteins. J Biochem Biophys Methods 50: 163–178. doi: 10.1016/s0165-022x(01)00181-6
|
[36] | Vivian JT, Callis PR (2001) Mechanisms of tryptophan fluorescence shifts in proteins. Biophys J 80: 2093–2109. doi: 10.1016/s0006-3495(01)76183-8
|
[37] | Muino PL, Callis PR (2009) Solvent effects on the fluorescence quenching of tryptophan by amides via electron transfer. Experimental and computational studies. J Phys Chem B 113: 2572–2577. doi: 10.1021/jp711513b
|
[38] | Ebel C, Faou P, Kernel B, Zaccai G (1999) Relative role of anions and cations in the stabilization of halophilic malate dehydrogenase. Biochemistry 38: 9039–9047. doi: 10.1021/bi9900774
|
[39] | Vrbka L, Vondrasek J, Jagoda-Cwiklik B, Vacha R, Jungwirth P (2006) Quantification and rationalization of the higher affinity of sodium over potassium to protein surfaces. Proc Natl Acad Sci U S A 103: 15440–15444. doi: 10.1073/pnas.0606959103
|