全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Arginine 199 and Leucine 208 Have Key Roles in the Control of Adenosine A2A Receptor Signalling Function

DOI: 10.1371/journal.pone.0089613

Full-Text   Cite this paper   Add to My Lib

Abstract:

One successful approach to obtaining high-resolution crystal structures of G-protein coupled receptors is the introduction of thermostabilising mutations within the receptor. This technique allows the generation of receptor constructs stabilised into different conformations suitable for structural studies. Previously, we functionally characterised a number of mutants of the adenosine A2A receptor, thermostabilised either in an agonist or antagonist conformation, using a yeast cell growth assay and demonstrated that there is a correlation between thermostability and loss of constitutive activity. Here we report the functional characterisation of 30 mutants intermediate between the Rag23 (agonist conformation mutant) and the wild-type receptor using the same yeast signalling assay with the aim of gaining greater insight into the role individual amino acids have in receptor function. The data showed that R199 and L208 have important roles in receptor function; substituting either of these residues for alanine abolishes constitutive activity. In addition, the R199A mutation markedly reduces receptor potency while L208A reduces receptor efficacy. A184L and L272A mutations also reduce constitutive activity and potency although to a lesser extent than the R199A and L208A. In contrast, the F79A mutation increases constitutive activity, potency and efficacy of the receptor. These findings shed new light on the role individual residues have on stability of the receptor and also provide some clues as to the regions of the protein responsible for constitutive activity. Furthermore, the available adenosine A2A receptor structures have allowed us to put our findings into a structural context.

References

[1]  Serrano-Vega MJ, Magnani F, Shibata Y, Tate CG (2008) Conformational thermostabilization of the beta1-adrenergic receptor in a detergent-resistant form. Proceedings of the National Academy of Sciences 105: 877–882 doi:10.1073/pnas.0711253105.
[2]  Magnani F, Shibata Y, Serrano-Vega MJ, Tate CG (2008) Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor. Proceedings of the National Academy of Sciences 105: 10744–10749 doi:10.1073/pnas.0804396105.
[3]  Shibata Y, White JF, Serrano-Vega MJ, Magnani F, Aloia AL, et al. (2009) Thermostabilization of the Neurotensin Receptor NTS1. Journal of Molecular Biology 390: 262–277 doi:10.1016/j.jmb.2009.04.068.
[4]  Shibata Y, Gvozdenovic-Jeremic J, Love J, Kloss B, White JF, et al. (2013) Biochimica et Biophysica Acta. BBA - Biomembranes 1828: 1293–1301 doi:10.1016/j.bbamem.2013.01.008.
[5]  Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, et al. (2008) Structure of a β1-adrenergic G-protein-coupled receptor. Nature 454: 486–491 doi:10.1038/nature07101.
[6]  Warne T, Moukhametzianov R, Baker JG, Nehmé R, Edwards PC, et al. (2012) The structural basis for agonist and partial agonist action on a b. Nature 469: 241–244 doi:10.1038/nature09746.
[7]  Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, et al. (2011) Structure of the Adenosine A. Structure 19: 1283–1293 doi:10.1016/j.str.2011.06.014.
[8]  Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, et al. (2011) Agonist-bound adenosine A. Nature 474: 521–525 Available: http://www.nature.com/doifinder/10.1038/?nature10136.
[9]  White JF, Noinaj N, Shibata Y, Love J, Kloss B, et al. (2012) Structure of the agonist-bound neurotensin receptor. Nature 1–8 doi:10.1038/nature11558.
[10]  Hollenstein K, Kean J, Bortolato A, Cheng RKY, Doré AS, et al. (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 499: 438–443 doi:10.1038/nature12357.
[11]  Bertheleme N, Singh S, Dowell SJ, Hubbard J, Byrne B (2013) Loss of constitutive activity is correlated with increased thermostability of the human adenosine A2A receptor. Br J Pharmacol 169: 988–998 doi:10.1111/bph.12165.
[12]  Jiang Q, Van Rhee AM, Kim J, Yehle S, Wess J, et al. (1996) Hydrophilic side chains in the third and seventh transmembrane helical domains of human A2A adenosine receptors are required for ligand recognition. Molecular Pharmacology 50: 512–521.
[13]  Dowell SJ, Brown AJ (2009) Yeast assays for G protein-coupled receptors. Methods Mol Biol 552: 213–229 Available: http://eutils.ncbi.nlm.nih.gov/entrez/eu?tils/elink.fcgi?dbfrom=pubmed&id=1951365?2&retmode=ref&cmd=prlinks.
[14]  Newstead S, Kim H, Heijne von G, Iwata S, Drew D (2007) High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 104: 13936–13941 Available: http://eutils.ncbi.nlm.nih.gov/entrez/eu?tils/elink.fcgi?dbfrom=pubmed&id=1770974?6&retmode=ref&cmd=prlinks.
[15]  Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2: 31–34 doi:10.1038/nprot.2007.13.
[16]  Klinger M, Kuhn M, Just H, Stefan E, Palmer T, et al. (2002) Removal of the carboxy terminus of the A 2A -adenosine receptor blunts constitutive activity: differential effect on cAMP accumulation and MAP kinase stimulation. Naunyn Schmied Arch Pharmacol 366: 287–298 doi:10.1007/s00210-002-0617-z.
[17]  Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EYT, et al. (2008) The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist. Science 322: 1211–1217 doi:10.1126/science.1164772.
[18]  Hino T, Arakawa T, Iwanari H, Yurugi-Kobayashi T, Ikeda-Suno C, et al. (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 1–5 doi:10.1038/nature10750.
[19]  Xu F, Wu H, Katritch V, Han GW, Jacobson KA, et al. (2011) Structure of an Agonist-Bound Human A2A Adenosine Receptor. Science 332: 322–327 doi:10.1126/science.1202793.
[20]  Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, et al. (2013) Molecular signatures of G-protein-coupled receptors. Nature 494: 185–194 doi:10.1038/nature11896.
[21]  Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, et al. (2012) Crystal structure of the b. Nature 477: 549–555 doi:10.1038/nature10361.
[22]  Jiang Q, Lee BX, Glashofer M, Van Rhee AM, Jacobson KA (1997) Mutagenesis reveals structure-activity parallels between human A2A adenosine receptors and biogenic amine G protein-coupled receptors. J Med Chem 40: 2588–2595 doi:10.1021/jm970084v.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133