Lactoferrin is an 80 kDa bilobal, iron binding glycoprotein which is primarily antimicrobial in nature. The hydrolysis of lactoferrin by various proteases in the gut produces several functional fragments of lactoferrin which have varying molecular sizes and properties. Here, bovine lactoferrin has been hydrolyzed by trypsin, the major enzyme present in the gut, to produce three functional molecules of sizes approximately 21 kDa, 38 kDa and 45 kDa. The molecules have been purified using ion exchange and gel filtration chromatography and identified using N-terminal sequencing, which reveals that while the 21 kDa molecule corresponds to the N2 domain (21LF), the 38 kDa represents the whole C-lobe (38LF) and the 45 kDa is a portion of N1 domain of N-lobe attached to the C-lobe (45LF). The iron binding and release properties of 21LF, 38LF and 45LF have been studied and compared. The sequence and structure analysis of the portions of the excision sites of LF from various species have been done. The antibacterial properties of these three molecules against bacterial strains, Streptococcus pyogenes, Escherichia coli, Yersinia enterocolitica and Listeria monocytogenes were investigated. The antifungal action of the molecules was also evaluated against Candida albicans. This is the first report on the antimicrobial actions of the trypsin cleaved functional molecules of lactoferrin from any species.
References
[1]
Reiter B, Brock JH, Steel ED (1975) Inhibition of Escherichia coli by bovine colostrum and post-colostral milk. II. The bacteriostatic effect of lactoferrin on a serum susceptible and serum resistant strain of E. coli. Immunology 28: 83–95.
[2]
Griffiths E, Humphreys J (1977) Bacteriostatic effect of human milk and bovine colostrum on Escherichia coli: importance of bicarbonate. Infect Immun 15: 396–401.
[3]
Chierici R (2001) Antimicrobial actions of lactoferrin. Adv Nutr 10: 247–269. doi: 10.1007/978-1-4615-0661-4_12
[4]
Masson PL, Heremans JF, Dive C (1966) An iron-binding protein common to many external secretions. Clinica Chimica Act 14: 735–739. doi: 10.1016/0009-8981(66)90004-0
[5]
Hagiwara S, Kawai K, Anri A, Nagahata H (2003) Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J Vet Med Sci 65: 319–323. doi: 10.1292/jvms.65.319
[6]
Broekhuyse RM (1974) Tear lactoferrin: a bacteriostatic and complexing protein. Invest Ophthalmol 13: 550–554.
[7]
Fox PC, Heft MW, Herrera M, Bowers MR, Mandel ID, et al. (1987) Secretion of antimicrobial proteins from the parotid glands of different aged healthy persons. J Gerontol 42: 466–469. doi: 10.1093/geronj/42.5.466
[8]
Niemela A, Kulomaa M, Vija P, Tuohimaa P, Saarikoski S, et al. (1989) Lactoferrin in human amniotic fluid. Hum Reprod 4: 99–101.
[9]
Abrink M, Larsson E, Gobl A, Hellman L (2000) Expression of lactoferrin in the kidney: Implications for innate immunity and iron metabolism. Kidney Int 57: 2004–2010. doi: 10.1046/j.1523-1755.2000.00050.x
[10]
Brock JH (1980) Lactoferrin in human milk: its role in iron absorption and protection against enteric infection in the newborn infant. Arch Dis Child 55: 417–421. doi: 10.1136/adc.55.6.417
[11]
Davidson L, Kastenmayer P, Yuen M, Lonnerdal B, Hurell RF, et al. (1994) Influence of lactoferrin on iron absorption from human milk in infants. Pediatr Res 35: 117–124. doi: 10.1203/00006450-199401000-00025
[12]
Anderson BF, Baker HM, Dodson EJ, Norris GE, Rumball SV, et al. (1987) Structure of human lactoferrin at 3.2 ? resolution. Proc Natl Acad Sci U S A 84: 1769–1773. doi: 10.1073/pnas.84.7.1769
[13]
Haridas M, Anderson BF, Baker HM, Norris GE, Baker EN, et al. (1994) X-ray structural analysis of bovine lactoferrin at 2.5 ? resolution. Adv Exp Med Biol 357: 235–238. doi: 10.1007/978-1-4615-2548-6_24
[14]
Karthikeyan S, Paramasivam M, Yadav S, Srinivasan A, Singh TP, et al. (1999) Structure of buffalo lactoferrin at 2.5 ? resolution using crystals grown at 303 K shows different orientations of the N and C lobes. Acta Crystallogr D Biol Crystallogr 55: 1805–1813. doi: 10.1107/s0907444999010951
[15]
Sharma AK, Paramasivam M, Srinivasan A, Yadav MP, Singh TP, et al. (1999) Three-dimensional structure of mare diferric lactoferrin at 2.6 ? resolution. J Mol Biol 289: 303–317. doi: 10.1006/jmbi.1999.2767
[16]
Sharma S, Singh TP, Bhatia KL (1999) Preparation and characterization of the N and C monoferric lobes of buffalo lactoferrin produced by proteolysis using proteinase K. J Dairy Res. 66: 81–90. doi: 10.1017/s0022029998003343
[17]
Khan JA, Kumar P, Paramasivam M, Yadav RS, Sahani MS, et al. (2001) Camel lactoferrin, a transferrin-cum-lactoferrin: crystal structure of camel apolactoferrin at 2.6 ? resolution and structural basis of its dual role. J Mol Biol 309: 751–761. doi: 10.1006/jmbi.2001.4692
[18]
Day CL, Anderson BF, Tweedie JW, Baker EN (1993) Structure of the recombinant N-terminal lobe of human lactoferrin at 2.0 ? resolution. J Mol Biol 232: 1084–1100. doi: 10.1006/jmbi.1993.1462
[19]
Sharma S, Jasti J, Kumar J, Mohanty AK, Singh TP, et al. (2003) Crystal structure of a proteolytically generated functional monoferric c-lobe of bovine lactoferrin at 1.9 ? resolution. J Mol Biol 331: 485–496. doi: 10.1016/s0022-2836(03)00717-4
[20]
Arnold RR, Cole MF, Mcghee JR (1977) A bactericidal effect for human lactoferrin. Science 197: 263–265. doi: 10.1126/science.327545
[21]
Kirkpatrick CH, Green I, Rich RR, Schade AL (1971) Inhibition of growth of Candida albicans by iron-unsaturated lactoferrin: relation to host-defense mechanisms in chronic mucocutaneous candidiasis. J Infect Dis 124: 539–544. doi: 10.1093/infdis/124.6.539
[22]
Valenti P, Marchetti M, Superti F, Amendolia MG, Puddu P, et al. (1998) Antiviral activity of lactoferrin. Adv Exp Med Biol 443: 199–203. doi: 10.1007/978-1-4757-9068-9_23
[23]
Brines RD, Brock JH (1983) The effect of trypsin and chymotrypsin on the in vitro antimicrobial and iron-binding properties of lactoferrin in human milk and bovine colostrum. Unusual resistance of human apolactoferrin to proteolytic digestion. Biochim Biophys Acta 759: 229–235. doi: 10.1016/0304-4165(83)90317-3
[24]
Bluard-Deconinck JM, Williams J, Evans RW, van Snick J, Osinski PA, et al. (1978) Iron-binding fragments from the N-terminal and C-terminal regions of human lactoferrin. Biochem J. 171: 321–327.
[25]
Legrand D, Mazurier J, Aubert JP, Marie-Henriette Loucheux-Lefebvre, Montreuil J (1986) Evidence for interactions between the 30 kDa N- and 50 C-terminal tryptic fragments of human lactotransferrin. Biochem. J. 236: 839–844.
[26]
Shimazaki KI, Tanaka T, Kon H, Oota K, Kawaguchi A, et al. (1993) Separation and characterization of the C-terminal half molecule of bovine lactoferrin. J Dairy Sci 76: 946–955.
[27]
Tomita M, Bellamy W, Takase M, Yamauchi K, Wakabayashi H, et al. (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74: 4137–4142.
[28]
Bellamy W, Takase M, Wakabayashi H (1992) Antibacterial spectrum of lactoferricin B, a potent bactericidal peptide derived from the N-terminal region of bovine lactoferrin. J Appl Bacteriol 73: 472–479. doi: 10.1111/j.1365-2672.1992.tb05007.x
[29]
Yamauchi K, Tomita M, Giehl TJ, Ellison RT 3rd (1993) Antibacterial activity of lactoferrin and pepsin-derived lactoferrin peptide fragment. Infect Immun 61: 719–728.
[30]
Jones EM, Smart A, Bloomberg G, Burgess L, Millar MR, et al. (1994) Lactoferricin, a new antimicrobial peptide. J Appl Bacteriol 77: 208–214. doi: 10.1111/j.1365-2672.1994.tb03065.x
[31]
Groenink J, Walgreen-Weterings E, van 't Hof W, Veerman EC, Nieuw Amerongen AV, et al. (1999) Cationic amphipathic peptides, derived from bovine and human lactoferrins, with antimicrobial activity against oral pathogens. FEMS Microbiol Lett. 179: 217–222. doi: 10.1111/j.1574-6968.1999.tb08730.x
[32]
Lupetti A, Paulusma-Annema A, Welling MM, Senesi S, van Dissel JT, et al. (2000) Candidacidal activities of human lactoferrin peptides derived from the N terminus. Antimicrob Agents Chemother 44: 3257–3263. doi: 10.1128/aac.44.12.3257-3263.2000
[33]
Nibbering PH, Ravensbergen E, Welling MM, van Berkel LA, van Berkel PH, et al. (2001) Human lactoferrin and peptides derived from its N terminus are highly effective against infections with antibiotic-resistant bacteria. Infect Immun. 69: 1469–1476. doi: 10.1128/iai.69.3.1469-1476.2001
[34]
Sinha M, Kaushik S, Kaur P, Sharma S, Singh TP, et al. (2013) Antimicrobial lactoferrin peptides: the hidden players in the protective function of a multifunctional protein. Int J Pept 2013: 390230. doi: 10.1155/2013/390230
[35]
Brock JH, Arzabe F, Lampreave F, Pi?eiro A (1976) The effect of trypsin on bovine transferrin and lactoferrin. Biochim Biophys Acta 446: 214–225. doi: 10.1016/0005-2795(76)90112-4
[36]
Higgins DG, Sharp PM (1988) CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244. doi: 10.1016/0378-1119(88)90330-7
[37]
DeLano WL (2002) The PyMol molecular Graphics System. DeLano Scientific, San Carlos CA.
[38]
Mazurier J, Spik G (1980) Comparative study of the iron binding properties of human transferrins. I. Complete and sequential iron saturation and desaturation of the lactotransferrin. Biochim Biophys Acta 629: 399–408. doi: 10.1016/0304-4165(80)90112-9
[39]
Masson PL, Heremans JF, Ferin J (1968) Presence of an iron-binding protein (lactoferrin) in the genital tract of the human female: Its immunochemical changes in the female genital tract. Fertil Steril 19: 679–689.
[40]
Nonnecke BJ, Smith KL (1984) Inhibition of mastitic bacteria by bovine milk apo-lactoferrin evaluated by in vitro microassay of bacterial growth. J Dairy Sci 67: 606–613.
[41]
Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 36: 493–496.
[42]
Ahmad A, Khan A, Khan LA, Manzoor N (2010) In vitro synergy of eugenol and methyl eugenol with fluconazole against clinical Candida isolates. J Med Microbiol 59: 1178–1184. doi: 10.1099/jmm.0.020693-0
[43]
Onyewu C, Blankenship JR, Poeta MD, Heitman J (2003) Ergosterol biosynthesis inhibitors become fungicidal when combined with calcineurin inhibitors against Candida albicans, Candida glabrata, and Candida krusei. Antimicrob Agents Chemother 47: 956–964. doi: 10.1128/aac.47.3.956-964.2003
[44]
Kurokawa H, Mikami B, Hirose M (1995) Crystal structure of diferric hen ovotransferrin at 2.4 ? resolution. J Mol Biol 254: 196–207. doi: 10.1006/jmbi.1995.0611
[45]
Bellamy WR, Wakabayashi H, Takase M, Kawase K, Shimamura S, et al. (1993) Role of cell-binding in the antibacterial mechanism of lactoferricin B. J Appl Bacteriol. 75: 478–484.
[46]
Tomita M, Takase M, Wakabayashi H, Bellamy W (1994) Antimicrobial peptides of lactoferrin. Adv Exp Med Biol. 357: 209–218. doi: 10.1007/978-1-4615-2548-6_20
[47]
Longhi C, Conte MP, Bellamy W, Seganti L, Valenti P, et al. (1994) Effect of lactoferricin B, a pepsin-generated peptide of bovine lactoferrin, on Escherichia coli HB101 (pRI203) entry into HeLa cells. Med Microbiol Immunol. 183: 77–85. doi: 10.1007/bf00277158
[48]
Li KJ, Lu MC, Hsieh SC, Wu CH, Yu HS, et al. (2006) Release of surface-expressed lactoferrin from polymorphonuclear neutrophils after contact with CD4+ T cells and its modulation on Th1/Th2 cytokine production. J Leukoc Biol. 80: 350–358. doi: 10.1189/jlb.1105668
[49]
Van der Does AM, Joosten SA, Vroomans E, Bogaards SJ, van Meijgaarden KE, et al. (2012) The antimicrobial peptide hLF1–11 drives monocyte-dendritic cell differentiation toward dendritic cells that promote antifungal responses and enhance Th17polarization. J Innate Immun. 4: 284–292. doi: 10.1159/000332941
[50]
Toma C, Honma Y, Iwanaga M (1996) Effect of Vibrio cholerae non-O1 protease on lysozyme, lactoferrin and secretory immunoglobulin A. FEMS Microbiol Lett. 135: 143–147. doi: 10.1111/j.1574-6968.1996.tb07979.x
[51]
Mirza S, Wilson L, Benjamin WH Jr, Novak J, Barnes S, et al. (2011) Serine protease PrtA from Streptococcus pneumoniae plays a role in the killing of S. pneumoniae by apolactoferrin. Infect Immun79: 2440–2450. doi: 10.1128/iai.00489-10