Inflammatory pain can be triggered by different stimuli, such as trauma, radiation, antigen and infection. In a model of inflammatory pain caused by infection, injection in the mice paw of lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR4) agonist, produces mechanical hyperalgesia. We identify here the TLR4 linked signaling pathways that elicit this response. Firstly, LPS paw injection in wild type (WT) mice produced mechanical hyperalgesia that was not altered in TRIF-/- mice. On the other hand, this response was absent in TLR4 mutant and MyD88 null mice and reduced in TNFR1 null mice. Either an IL-1 receptor antagonist, anti-KC/CXCL1 antibody, indomethacin or guanethidine injection also lessened this response. Moreover, LPS-induced time dependent increases in TNF-α, KC/CXCL1 and IL-1β expression in the mice paw, which were absent in TLR4 mutant and MyD88 null mice. Furthermore, in TNFR1 deficient mice, the LPS-induced rises in KC/CXCL1 and IL-1β release were less than in their wild type counterpart. LPS also induced increase of myeloperoxidase activity in the paw skin, which was inhibited in TLR4 mutant and MyD88 null mice, and not altered in TRIF-/- mice. These results suggest that LPS-induced inflammatory pain in mice is solely dependent on the TLR4/MyD88 rather than the TLR4/TRIF signaling pathway. This pathway triggers pronociceptive cytokine TNF-α release that in turn mediates rises in KC/CXCL1 and IL-1β expression. Finally, these cytokines might be involved in stimulating production of directly-acting hyperalgesic mediators such as prostaglandins and sympathomimetic amine.
References
[1]
Handwerker HO, Neher KD (1976) Characteristics of C-fibre receptors in the cat's foot responding to stepwise increase of skin temperature of noxious levels. Pflugers Arch 365: 221–229. doi: 10.1007/bf01067022
[2]
Perl ER, Kumazawa T, Lynn B, Kenins P (1976) Sensitization of high threshold receptors with unmyelinated (C) afferent fibers. Prog Brain Res 43: 263–277. doi: 10.1016/s0079-6123(08)64359-9
[3]
Verri WA Jr, Cunha TM, Parada CA, Poole S, Cunha FQ, et al. (2006) Hyperalgesic role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther 112: 116–138. doi: 10.1016/j.pharmthera.2006.04.001
[4]
Cunha TM, Verri WA Jr, Fukada SY, Guerrero AT, Santodomingo-Garzón T, et al. (2007) TNF-alpha and IL-1beta mediate inflammatory hypernociception in mice triggered by B1 but not B2 kinin receptor. Eur J Pharmacol 573: 221–229. doi: 10.1016/j.ejphar.2007.07.007
[5]
Cunha TM, Verri WA Jr, Silva JS, Poole S, Cunha FQ, et al. (2005) A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci U S A 102: 1755–1760. doi: 10.1073/pnas.0409225102
[6]
Cunha TM, Dal-Secco D, Verri WA Jr, Guerrero AT, Souza GR, et al. (2008) Dual role of hydrogen sulfide in mechanical inflammatory hypernociception. Eur J Pharmacol 590: 127–135. doi: 10.1016/j.ejphar.2008.05.048
[7]
Kawai T, Akira S (2005) Pathogen recognition with Toll-like receptors. Curr Opin Immunol 17: 338–344. doi: 10.1016/j.coi.2005.02.007
[8]
Meller ST, Dykstra C, Grzybycki D, Murphy S, Gebhart GF (1994) The possible role of glia in nociceptive processing and hyperalgesia in the spinal cord of the rat. Neuropharmacology 33: 1471–1478. doi: 10.1016/0028-3908(94)90051-5
[9]
Sugama S, Takenouchi T, Fujita M, Conti B, Hashimoto M (2009) Differential microglial activation between acute stress and lipopolysaccharide treatment. J Neuroimmunol 207: 24–31. doi: 10.1016/j.jneuroim.2008.11.007
[10]
Ferreira SH, Cunha FQ, Lorenzetti BB, Michelin MA, Perretti M, et al. (1997) Role of lipocortin-1 in the anti-hyperalgesic actions of dexamethasone. Br J Pharmacol 121: 883–888. doi: 10.1038/sj.bjp.0701211
[11]
Cunha TM, Verri WA Jr, Vivancos GG, Moreira IF, Reis S, et al. (2004) An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res 37: 401–407. doi: 10.1590/s0100-879x2004000300018
[12]
Motta EM, Chichorro JG, D'Orléans-Juste P, Rae GA (2009) Roles of endothelin ETA and ETB receptors in nociception and chemical, thermal and mechanical hyperalgesia induced by endothelin-1 in the rat hindpaw. Peptides 30: 918–925. doi: 10.1016/j.peptides.2009.01.011
[13]
Casagrande R, Georgetti SR, Verri WA Jr, Dorta DJ, dos Santos AC, et al. (2006) Protective effect of topical formulations containing quercetin against UVB-induced oxidative stress in hairless mice. J Photochem Photobiol 84: 21–27. doi: 10.1016/j.jphotobiol.2006.01.006
[14]
Akira S, Takeda K (2004) Functions of toll-like receptors: lessons from KO mice. C R Biol 327: 581–589. doi: 10.1016/j.crvi.2004.04.002
[15]
Beutler B (2004) Toll-like receptors and their place in immunology. Where does the immune response to infection begin? Nat Rev Immunol 4: 498–498. doi: 10.1038/nri1401
[16]
Gais P, Tiedje C, Altmayr F, Gaestel M, Weighardt H, et al. (2010) TRIF signaling stimulates translation of TNF-alpha mRNA via prolonged activation of MK2. J Immunol 184: 5842–5848. doi: 10.4049/jimmunol.0902456
[17]
Endale M, Park SC, Kim S, Kim SH, Yang Y, et al. (2013) Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 218: 1452–1467. doi: 10.1016/j.imbio.2013.04.019
Ehrchen JM, Sunderk?tter C, Foell D, Vogl T, Roth J (2009) The endogenous Toll- like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol 86: 557–566. doi: 10.1189/jlb.1008647
[20]
Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, et al. (2013) Bacteria activate sensory neurons that modulate pain and inflammation. Nature 501: 52–57. doi: 10.1038/nature12479
[21]
Shen H, Whitmire JK, Fan X, Shedlock DJ, Kaech SM, et al. (2003) A specific role for B cells in the generation of CD8 T cell memory by recombinant Listeria monocytogenes. J Immunol 170 (3): 1443–51. doi: 10.4049/jimmunol.170.3.1443
[22]
Palsson-McDermott EM, O'Neill LA (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113: 153–162. doi: 10.1111/j.1365-2567.2004.01976.x
[23]
Rhee SH, Hwang D (2000) Murine TOLL-like receptor 4 confers lipopolysaccharide responsiveness as determined by activation of NF kappa B and expression of the inducible cyclooxygenase. J Biol Chem 275: 34035–34040. doi: 10.1074/jbc.m007386200
[24]
Ojaniemi M, Glumoff V, Harju K, Liljeroos M, Vuori K, et al. (2003) Phosphatidylinositol 3-kinase is involved in Toll-like receptor 4-mediated cytokine expression in mouse macrophages. Eur J Immunol 3: 597–605. doi: 10.1002/eji.200323376
[25]
Keck S, Müller I, Fejer G, Savic I, Tchaptchet S, et al. (2011) Absence of TRIF signaling in lipopolysaccharide-stimulated murine mast cells. J Immunol 186: 5478–5488. doi: 10.4049/jimmunol.1000458
[26]
Medvedev AE, Kopydlowski KM, Vogel SN (2000) Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and toll-like receptor 2 and 4 gene expression. J Immunol 164: 5564–5574. doi: 10.4049/jimmunol.164.11.5564
[27]
Lorenzetti BB, Veiga FH, Canetti CA, Poole S, Cunha FQ, et al. (2002) Cytokine-induced neutrophil chemoattractant 1 (CINC-1) mediates the sympathetic component of inflammatory mechanical hypersensitivitiy in rats. Eur Cytokine Netw 13: 456–461.
[28]
Ferreira SH, Lorenzetti BB, Bristow AF, Poole S (1988) Interleukin-1 beta as a potent hyperalgesic agent antagonized by a tripeptide analogue. Nature 334: 698–700. doi: 10.1038/334698a0
[29]
Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH (1992) The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 107: 660–664. doi: 10.1111/j.1476-5381.1992.tb14503.x
[30]
Verri WA Jr, Guerrero AT, Fukada SY, Valerio DA, Cunha TM, et al. (2008) IL-33 mediates antigen-induced cutaneous and articular hyperalgesia in mice. Proc Natl Acad Sci U S A 105: 2723–2728. doi: 10.1073/pnas.0712116105
[31]
Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78: 206–209. doi: 10.1111/1523-1747.ep12506462
[32]
Cunha TM, Verri WA Jr, Schivo IR, Napimoga MH, Parada CA, et al. (2008) Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J Leukoc Biol 83: 824–32. doi: 10.1189/jlb.0907654
[33]
Guerrero AT, Verri WA Jr, Cunha TM, Silva TA, Schivo IR, et al. (2008) Involvement of LTB4 in zymosan-induced joint nociception in mice: participation of neutrophils and PGE2. J Leukoc Biol 83: 122–30. doi: 10.1189/jlb.0207123
[34]
Valério DA, Ferreira FI, Cunha TM, Alves-Filho JC, Lima FO, et al. (2009) Fructose-1,6-bisphosphate reduces inflammatory pain-like behaviour in mice: role of adenosine acting on A1 receptors. Br. J. Pharmacol 158: 558–568. doi: 10.1111/j.1476-5381.2009.00325.x
[35]
Loiarro M, Ruggiero V, Sette C (2013) Targeting the Toll-like receptor/interleukin 1 receptor pathway in human diseases: rational design of MyD88 inhibitors. Clin Lymphoma Myeloma Leuk 13: 222–226. doi: 10.1016/j.clml.2013.02.003
[36]
Shinya K, Gao Y, Cilloniz C, Suzuki Y, Fujie M, et al. (2012) Integrated clinical, pathologic, virologic, and transcriptomic analysis of H5N1 influenza virus-induced viral pneumonia in the rhesus macaque. J Virol 86: 6055–6066. doi: 10.1128/jvi.00365-12
[37]
Needham BD, Carroll SM, Giles DK, Georgiou G, Whiteley M, et al. (2013) Modulating the innate immune response by combinatorial engineering of endotoxin. Proc Natl Acad Sci U S A 110: 1464–1469. doi: 10.1073/pnas.1218080110
[38]
Gandhapudi SK, Chilton PM, Mitchell TC (2013) TRIF is required for TLR4 mediated adjuvant effects on T cell clonal expansion. PLoS One 8: e56855. doi: 10.1371/journal.pone.0056855