Eukaryotic 18S ribosomal RNA (rRNA) gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities.
References
[1]
Blifernez-Klassen O, Klassen V, Doebbe A, Kersting K, Grimm P, et al. (2012) Cellulose degradation and assimilation by the unicellular phototrophic eukaryote Chlamydomonas reinhardtii. Nat Commun 3: 1214. doi: 10.1038/ncomms2210
[2]
Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Antonie Van Leeuwenhoek 81: 293–308. doi: 10.1023/a:1020591307260
[3]
Parfrey LW, Walters WA, Knight R (2011) Microbial eukaryotes in the human microbiome: ecology, evolution, and future directions. Front Microbiol 2: 153. doi: 10.3389/fmicb.2011.00153
[4]
Sharp KH, Distel D, Paul VJ (2012) Diversity and dynamics of bacterial communities in early life stages of the Caribbean coral Porites astreoides. ISME J 6: 790–801. doi: 10.1038/ismej.2011.144
[5]
Roussel EG, Konn C, Charlou JL, Donval JP, Fouquet Y, et al. (2011) Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol Ecol 77: 647–665. doi: 10.1111/j.1574-6941.2011.01161.x
[6]
Orsi W, Charvet S, Vd'a?ny P, Bernhard JM, Edgcomb VP (2012) Prevalence of partnerships between bacteria and ciliates in oxygen-depleted marine water columns. Front Microbiol 3: 341. doi: 10.3389/fmicb.2012.00341
[7]
Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156: 609–643. doi: 10.1099/mic.0.037143-0
[8]
Ferrer M, Werner J, Chernikova TN, Bargiela R, Fernández L, et al. (2012) Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. Environ Microbiol 14: 268–281. doi: 10.1111/j.1462-2920.2011.02634.x
[9]
Biddle JF, Cardman Z, Mendlovitz H, Albert DB, Lloyd KG, et al. (2012) Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments. ISME J 6: 1018–1031. doi: 10.1038/ismej.2011.164
[10]
Edgcomb V, Orsi W, Bunge J, Jeon S, Christen R, et al. (2011) Protistan microbial observatory in the Cariaco Basin, Caribbean. I. Pyrosequencing vs Sanger insights into species richness. ISME J 5: 1344–1356. doi: 10.1038/ismej.2011.6
[11]
Orsi W, Song YC, Hallam S, Edgcomb V (2012) Effect of oxygen minimum zone formation on communities of marine protists. ISME J 6: 1586–1601. doi: 10.1038/ismej.2012.7
[12]
Behnke A, Bunge J, Barger K, Breiner H-W, Alla V, et al. (2006) Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl Env Microbiol 72: 3626–3636. doi: 10.1128/aem.72.5.3626-3636.2006
[13]
Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, et al. (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27: 233–243. doi: 10.1016/j.tree.2011.11.010
[14]
Medinger R, Nolte V, Pandey RV, Jost S, Ottenw?Lder B, et al. (2010) Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Mol Eco 19: 32–40. doi: 10.1111/j.1365-294x.2009.04478.x
[15]
Kittelmann S, Seedorf H, Walters WA, Clemente JC, Knight R, et al. (2013) Simultaneous amplicon sequencing to explore co-occurrence patterns of bacterial, archaeal and eukaryotic microorganisms in rumen microbial communities. PLoS ONE 8: e47879. doi: 10.1371/journal.pone.0047879
[16]
Pawlowski J, Christen R, Lecroq B, Bachar D, Shahbazkia HR, et al. (2011) Eukaryotic richness in the abyss: Insights from pyrotag sequencing. PLoS ONE 6: e18169. doi: 10.1371/journal.pone.0018169
[17]
Ragon M, Fontaine MC, Moreira D, LóPez-GarcíA P (2012) Different biogeographic patterns of prokaryotes and microbial eukaryotes in epilithic biofilms. Mol Ecol 21: 3852–3868. doi: 10.1111/j.1365-294x.2012.05659.x
[18]
Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc Natl Acad Sci USA 74: 5088–5090. doi: 10.1073/pnas.74.11.5088
[19]
Amaral-Zettler LA, McCliment EA, Ducklow HW, Huse SM (2009) A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS ONE 4: e6372. doi: 10.1371/journal.pone.0006372
[20]
Bik HM, Sung WAY, De Ley P, Baldwin JG, Sharma J, et al. (2012) Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep-sea and shallow water sediments. Mol Eco 21: 1048–1059. doi: 10.1111/j.1365-294x.2011.05297.x
[21]
Lopez-Garcia P, Rodriguez-Valera F, Pedros-Alio C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409: 603–607. doi: 10.1038/35054537
[22]
Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, et al. (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474: 200–203. doi: 10.1038/nature09984
[23]
Nonnenmann MW, Coronado G, Thompson B, Griffith WC, Hanson JD, et al. (2012) Utilizing pyrosequencing and quantitative PCR to characterize fungal populations among house dust samples. J Environ Monit 14: 2038–2043. doi: 10.1039/c2em30229b
[24]
Medlin L, Elwood HJ, Stickel S, Sogin ML (1988) The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71: 491–499. doi: 10.1016/0378-1119(88)90066-2
[25]
Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157: 31–43. doi: 10.1016/j.protis.2005.10.004
[26]
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, et al. (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res 41: D590–D596. doi: 10.1093/nar/gks1219
[27]
Wang Y, Qian P-Y (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS ONE 4: e7401. doi: 10.1371/journal.pone.0007401
[28]
Ludwig W, Strunk O, Westram R, Richter L, Meier H, et al. (2004) ARB: a software environment for sequence data. Nucl Acids Res 32: 1363–1371. doi: 10.1093/nar/gkh293
[29]
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7: 335–336. doi: 10.1038/nmeth.f.303
[30]
Lee OO, Wong YH, Qian PY (2009) Inter- and intraspecific variations of bacterial communities associated with marine sponges from san juan island, washington. Appl Environ Microbiol 75: 3513–3521. doi: 10.1128/aem.00002-09
[31]
Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic Acid Techniques in Bacterial Systematics. New York, NY, USA: John Wiley & Sons. pp. 115–147.
[32]
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, et al. (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Env Microbiol 56: 1919–1925.
[33]
Bougouffa S, Yang JK, Lee OO, Wang Y, Batang Z, et al. (2013) Distinctive microbial community structure in highly stratified deep-sea brine water column. Appl Environ Microbiol 79: 3425–3437. doi: 10.1128/aem.00254-13
[34]
Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27: 431–432. doi: 10.1093/bioinformatics/btq675
[35]
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, et al. (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucl Acids Res 41: e1. doi: 10.1093/nar/gks808
[36]
Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N (2011) Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331: 730–736. doi: 10.1126/science.1198308
[37]
Demeshkina N, Jenner L, Westhof E, Yusupov M, Yusupova G (2012) A new understanding of the decoding principle on the ribosome. Nature 484: 256–259. doi: 10.1038/nature10913
[38]
Huang Y, Gilna P, Li W (2009) Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25: 1338–1340. doi: 10.1093/bioinformatics/btp161
[39]
Birnstiel ML, Chipchase M, Speirs J (1971) The ribosomal RNA cistrons. Prog Nucleic Acid Res Mol Biol 11: 351–389. doi: 10.1016/s0079-6603(08)60332-3
[40]
Prokopowich CD, Gregory TR, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46: 48–50. doi: 10.1139/g02-103
[41]
Klappenbach JA, Dunbar JM, Schmidt TM (2000) rRNA operon copy number reflects ecological strategies of Bacteria. Appl Environ Microbiol 66: 1328–1333. doi: 10.1128/aem.66.4.1328-1333.2000
[42]
Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J Bacteriol 186: 2629–2635. doi: 10.1128/jb.186.9.2629-2635.2004
[43]
Jeffery N, Jardine C, Gregory R (2013) A first exploration of genome size diversity in sponges. Genome 56: 451–456. doi: 10.1139/gen-2012-0122
[44]
Pillet L, Fontaine D, Pawlowski J (2012) Intra-genomic ribosomal RNA polymorphism and morphological variation in Elphidium macellum suggests inter-specific hybridization in Foraminifera. PLoS ONE 7: e32373. doi: 10.1371/journal.pone.0032373
[45]
Huws SA, Edwards JE, Kim EJ, Scollan ND (2007) Specificity and sensitivity of eubacterial primers utilized for molecular profiling of bacteria within complex microbial ecosystems. J Microbiol Methods 70: 565–569. doi: 10.1016/j.mimet.2007.06.013
[46]
Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6: 725–740. doi: 10.1038/nrmicro1992
[47]
Edgcomb VP, Kysela DT, Teske A, De Vera Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci USA 99: 7658–7662. doi: 10.1073/pnas.062186399
[48]
Elwood HJ, Olsen GJ, Sogin ML (1985) The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Mol Biol Evol 2: 399–410.
[49]
Giovanonni LE, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group specific oligonucleotide probes for identification of single microbial cells. J Bacteriol 170: 720–726.
[50]
Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci USA 99: 8324–8329. doi: 10.1073/pnas.062169599