全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Effects of Nitrogen Addition and Fire on Plant Nitrogen Use in a Temperate Steppe

DOI: 10.1371/journal.pone.0090057

Full-Text   Cite this paper   Add to My Lib

Abstract:

Plant nitrogen (N) use strategies have great implications for primary production and ecosystem nutrient cycling. Given the increasing atmospheric N deposition received by most of the terrestrial ecosystems, understanding the responses of plant N use would facilitate the projection of plant-mediated N cycling under global change scenarios. The effects of N deposition on plant N use would be affected by both natural and anthropogenic disturbances, such as prescribed fire in the grassland. We examined the effects of N addition (5.25 g N m?2 yr?1) and prescribed fire (annual burning) on plant N concentrations and N use characters at both species and community levels in a temperate steppe of northern China. We found that N addition and fire independently affected soil N availability and plant N use traits. Nitrogen addition increased aboveground net primary productivity (ANPP), inorganic N, and N uptake, decreased N response efficiency (NRE), but did not affect biomass-weighed N concentrations at community level. Prescribed fire did not change the community level N concentrations, but largely decreased N uptake efficiency and NRE. At the species level, the effects of N addition and fire on plant N use were species-specific. The divergent responses of plant N use at community and species levels to N addition and fire highlight the importance of the hierarchical responses of plant N use at diverse biological organization levels to the alteration of soil N availability. This study will improve our understanding of the responses of plant-mediated N cycling to global change factors and ecosystem management strategies in the semiarid grasslands.

References

[1]  LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89: 371–379. doi: 10.1890/06-2057.1
[2]  Perakis SS, Kellogg CH (2007) Imprint of oaks on nitrogen availability and delta N-15 in California grassland-savanna: a case of enhanced N inputs? Plant Ecol 191: 209–220. doi: 10.1007/s11258-006-9238-9
[3]  Cole L, Buckland SM, Bardgett RD (2008) Influence of disturbance and nitrogen addition on plant and soil animal diversity in grassland. Soil Biol Biochem 40: 505–514. doi: 10.1016/j.soilbio.2007.09.018
[4]  Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13: 87–115. doi: 10.1007/bf00002772
[5]  Vitousek P (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119: 553–572. doi: 10.1086/283931
[6]  Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Adv Ecol Res 30: 1–47. doi: 10.1016/s0065-2504(08)60016-1
[7]  Hirose T (2011) Nitrogen use efficiency revisited. Oecologia 166: 863–867. doi: 10.1007/s00442-011-1942-z
[8]  Pastor J, Bridgham SD (1999) Nutrient efficiency along nutrient availability gradients. Oecologia 118: 50–58. doi: 10.1007/s004420050702
[9]  Shaver GR, Melillo JM (1984) Nutrient budgets of marsh plants: efficiency concepts and relation to availability. Ecology 65: 1491–1510. doi: 10.2307/1939129
[10]  Bridgham SD, Pastor J, McClaugherty CA, Richardson CJ (1995) Nutrient-Use-Efficiency: A litterfall index, a model, and a test along a nutrient availability gradient in North-Carolina peatland. Am Nat 145: 1–21. doi: 10.1086/285725
[11]  Iversen CM, Bridgham SD, Kellogg LE (2010) Scaling plant nitrogen use and uptake efficiencies in response to nutrient addition in peatlands. Ecology 91: 693–707. doi: 10.1890/09-0064.1
[12]  Melillo JM, Steudler PA, Aber JD, Newkirk K, Lux H, et al. (2002) Soil warming and carbon-cycle feedbacks to the climate system. Science 298: 2173–2176. doi: 10.1126/science.1074153
[13]  Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139: 169–187. doi: 10.1046/j.1469-8137.1998.00176.x
[14]  Bai Y, Wu J, Clark CM, Naeem S, Pan Q, et al. (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia grasslands. Glob Change Biol 16: 358–372. doi: 10.1111/j.1365-2486.2009.01950.x
[15]  Keuter A, Hoeft I, Veldkamp E, Corre MD (2012) Nitrogen response efficiency of a managed and phytodiverse temperate grassland. Plant Soil 364: 193–206. doi: 10.1007/s11104-012-1344-y
[16]  Chapin FS, Vitousek PM, Vancleve K (1986) The nature of nutrient limitation in plant-communities. Am Nat 127: 48–58. doi: 10.1086/284466
[17]  Lu XT, Freschet GT, Flynn DFB, Han XG (2012) Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant-soil feedbacks and microscale heterogeneity in a semi-arid grassland. J Ecol 100: 144–150. doi: 10.1111/j.1365-2745.2011.01881.x
[18]  Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010) Substantial nutrient resorption from leaves, stems and roots in a subarctic flora: what is the link with other resource economics traits? New Phytol 186: 879–889. doi: 10.1111/j.1469-8137.2010.03228.x
[19]  Chapin FS (1980) The mineral nutrition of wild plants. Ann Rev Ecol Syst 11: 233–260. doi: 10.1146/annurev.es.11.110180.001313
[20]  Koerselman W, Meuleman AFM (1996) The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J Appl Ecol 33: 1441–1450. doi: 10.2307/2404783
[21]  Wan SQ, Hui DF, Luo YQ (2001) Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: A meta-analysis. Ecol Appl 11: 1349–1365. doi: 10.1890/1051-0761(2001)011[1349:feonpa]2.0.co;2
[22]  Reich PB, Peterson DW, Wedin DA, Wrage K (2001) Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82: 1703–1719. doi: 10.2307/2679812
[23]  Pilkington MG, Caporn SJM, Carroll JA, Cresswell N, Phoenix GK, et al. (2007) Impacts of burning and increased nitrogen deposition on nitrogen pools and leaching in an upland moor. J Ecol 95: 1195–1207. doi: 10.1111/j.1365-2745.2007.01292.x
[24]  Watson PJ, Bradstock RA, Morris EC (2009) Fire frequency influences composition and structure of the shrub layer in an Australian subcoastal temperate grassy woodland. Aust Ecol 34: 218–232. doi: 10.1111/j.1442-9993.2008.01924.x
[25]  Bowman DM, Balch JK, Artaxo P, Bond WJ, Carlson JM, et al. (2009) Fire in the Earth system. Science 324: 481–484. doi: 10.1126/science.1163886
[26]  Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20: 387–394. doi: 10.1016/j.tree.2005.04.025
[27]  Britton AJ, Helliwell RC, Fisher JM, Gibbs S (2008) Interactive effects of nitrogen deposition and fire on plant and soil chemistry in an alpine heathland. Environ Poll 156: 409–416. doi: 10.1016/j.envpol.2008.01.029
[28]  Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA (2011) Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16: 406–411. doi: 10.1016/j.tplants.2011.04.002
[29]  Bradshaw SD, Dixon KW, Hopper SD, Lambers H, Turner SR (2011) Response to Keeley et al.: Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16: 405–405. doi: 10.1016/j.tplants.2011.05.005
[30]  Heisler JL, Briggs JM, Knapp AK, Blair JM, Seery A (2004) Direct and indirect effects of fire on shrub density and aboveground productivity in a mesic grassland. Ecology 85: 2245–2257. doi: 10.1890/03-0574
[31]  Bowles ML, Jones MD (2013) Repeated burning of eastern tallgrass prairie increases richness and diversity, stabilizing late successional vegetation. Ecol Appl 23: 464–478. doi: 10.1890/12-0808.1
[32]  Ojima DS, Schimel DS, Parton WJ, Owensby CE (1994) Long-term and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24: 67–84. doi: 10.1007/bf02390180
[33]  Zhou L, Huang J, Lü F, Han X (2009) Effects of prescribed burning and seasonal and interannual climate variation on nitrogen mineralization in a typical steppe in Inner Mongolia. Soil Biol Biochem 41: 796–803. doi: 10.1016/j.soilbio.2009.01.019
[34]  Lü XT, Cui Q, Wang QB, Han XG (2011) Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. Ecol Engin 37: 534–538. doi: 10.1016/j.ecoleng.2010.12.013
[35]  Cui Q, Lü XT, Wang QB, Han XG (2010) Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant Soil 334: 209–219. doi: 10.1007/s11104-010-0375-5
[36]  Lü XT, Lu FM, Zhou LS, Han X, Han XG (2012) Stoichiometric response of dominant grasses to fire and mowing in a semi-arid grassland. J Arid Environ 78: 154–160. doi: 10.1016/j.jaridenv.2011.11.008
[37]  Lü XT, Kong DL, Pan QM, Simmons ME, Han XG (2012) Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia 168: 301–310. doi: 10.1007/s00442-011-2097-7
[38]  Aerts R, Decaluwe H (1994) Nitrogen use efficiency of Carex species in relation to nitrogen suplly. Ecology 75: 2362–2372. doi: 10.2307/1940890
[39]  Yasumura Y, Hikosaka K, Matsui K, Hirose T (2002) Leaf-level nitrogen-use efficiency of canopy and understorey species in a beech forest. Fun Ecol 16: 826–834. doi: 10.1046/j.1365-2435.2002.00691.x
[40]  Yuan ZY, Li LH, Huang JH, Han XG, Wan SQ (2005) Effect of nitrogen supply on the nitrogen use efficiency of an annual herb, Helianthus annuus L. J Integrat Plant Biol. 47: 539–548. doi: 10.1111/j.1744-7909.2005.00006.x
[41]  Reich PB, Grigal DF, Aber JD, Gower ST (1997) Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils. Ecology 78: 335–347. doi: 10.2307/2266011
[42]  Blair JM, Parmelee RW, Beare MH (1990) Decay-rates, nitrogen fluxes, and decomposer communities of single-species and mixed-species foliar litter. Ecology 71: 1976–1985. doi: 10.2307/1937606
[43]  Yuan ZY, Li LH, Han XG, Chen SP, Wang ZW, et al. (2006) Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China. Oecologia 148: 564–572. doi: 10.1007/s00442-006-0409-0
[44]  Olear HA, Seastedt TR, Briggs JM, Blair JM, Ramundo RA (1996) Fire and topographic effects on decomposition rates and N dynamics of buried wood in tallgrass prairie. Soil Biol Biochem 28: 323–329. doi: 10.1016/0038-0717(95)00138-7
[45]  Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122: 51–71. doi: 10.1016/s0378-1127(99)00032-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133