Signal transducer and activator of transcription STAT5 and its upstream activating kinase JAK2 are essential mediators of cytokine signaling. Their activity is normally tightly regulated and transient. However, constitutive activation of STAT5 is found in numerous cancers and a driving force for malignant transformation. We describe here the identification of the synthetic chalcone α-Br-2′,3,4,4′-tetramethoxychalcone (α-Br-TMC) as a novel JAK/STAT inhibitor. Using the non-transformed IL-3-dependent B cell line Ba/F3 and its oncogenic derivative Ba/F3-1*6 expressing constitutively activated STAT5, we show that α-Br-TMC targets the JAK/STAT pathway at multiple levels, inhibiting both JAK2 and STAT5 phosphorylation. Moreover, α-Br-TMC alters the mobility of STAT5A/B proteins in SDS-PAGE, indicating a change in their post-translational modification state. These alterations correlate with a decreased association of STAT5 and RNA polymerase II with STAT5 target genes in chromatin immunoprecipitation assays. Interestingly, expression of STAT5 target genes such as Cis and c-Myc was differentially regulated by α-Br-TMC in normal and cancer cells. While both genes were inhibited in IL-3-stimulated Ba/F3 cells, expression of the oncogene c-Myc was down-regulated and that of the tumor suppressor gene Cis was up-regulated in transformed Ba/F3-1*6 cells. The synthetic chalcone α-Br-TMC might therefore represent a promising novel anticancer agent for therapeutic intervention in STAT5-associated malignancies.
References
[1]
Grimley PM, Dong F, Rui H (1999) Stat5a and Stat5b: fraternal twins of signal transduction and transcriptional activation. Cytokine Growth Factor Rev 10: 131–157. doi: 10.1016/s1359-6101(99)00011-8
[2]
Wakao H, Gouilleux F, Groner B (1994) Mammary gland factor (MGF) is a novel member of the cytokine regulated transcription factor gene family and confers the prolactin response. EMBO J 13: 2182–2191.
[3]
Basham B, Sathe M, Grein J, McClanahan T, D'Andrea A, et al. (2008) In vivo identification of novel STAT5 target genes. Nucleic Acids Res 36: 3802–3818. doi: 10.1093/nar/gkn271
[4]
Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, et al. (1999) STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 18: 4754–4765. doi: 10.1093/emboj/18.17.4754
[5]
Mui AL, Wakao H, Kinoshita T, Kitamura T, Miyajima A (1996) Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. EMBO J 15: 2425–2433.
[6]
Van Nguyen T, Angkasekwinai P, Dou H, Lin F-M, Lu L-S, et al. (2012) SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol Cell 45: 210–221. doi: 10.1016/j.molcel.2011.12.026
[7]
Wieczorek M, Ginter T, Brand P, Heinzel T, Kr?mer OH (2012) Acetylation modulates the STAT signaling code. Cytokine Growth Factor Rev 23: 293–305. doi: 10.1016/j.cytogfr.2012.06.005
[8]
Ma L, Gao J, Guan Y, Shi X, Zhang H, et al. (2010) Acetylation modulates prolactin receptor dimerization. Proc Natl Acad Sci U S A 107: 19314–19319. doi: 10.1073/pnas.1010253107
[9]
Lin JX, Leonard WJ (2000) The role of Stat5a and Stat5b in signaling by IL-2 family cytokines. Oncogene 19: 2566–2576. doi: 10.1038/sj.onc.1203523
[10]
Shuai K (2000) Modulation of STAT signaling by STAT-interacting proteins. Oncogene 19: 2638–2644. doi: 10.1038/sj.onc.1203522
[11]
Lin J-X, Li P, Liu D, Jin HT, He J, et al. (2012) Critical Role of STAT5 transcription factor tetramerization for cytokine responses and normal immune function. Immunity 36: 586–599. doi: 10.1016/j.immuni.2012.02.017
[12]
Mandal M, Powers SE, Maienschein-Cline M, Bartom ET, Hamel KM, et al. (2011) Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2. Nat Immunol 12: 1212–1220. doi: 10.1038/ni.2136
[13]
Litterst CM, Kliem S, Marilley D, Pfitzner E (2003) NCoA-1/SRC-1 is an essential coactivator of STAT5 that binds to the FDL motif in the alpha-helical region of the STAT5 transactivation domain. J Biol Chem 278: 45340–45351. doi: 10.1074/jbc.m303644200
[14]
Pfitzner E, J?hne R, Wissler M, Stoecklin E, Groner B (1998) p300/CREB-binding protein enhances the prolactin-mediated transcriptional induction through direct interaction with the transactivation domain of Stat5, but does not participate in the Stat5-mediated suppression of the glucocorticoid response. Mol Endocrinol Baltim Md 12: 1582–1593. doi: 10.1210/mend.12.10.0180
[15]
John S, Vinkemeier U, Soldaini E, Darnell JE Jr, Leonard WJ (1999) The significance of tetramerization in promoter recruitment by Stat5. Mol Cell Biol 19: 1910–1918.
[16]
Ward AC, Touw I, Yoshimura A (2000) The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood 95: 19–29.
[17]
Valentino L, Pierre J (2006) JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 71: 713–721. doi: 10.1016/j.bcp.2005.12.017
[18]
Bowman T, Garcia R, Turkson J, Jove R (2000) STATs in oncogenesis. Oncogene 19: 2474–2488. doi: 10.1038/sj.onc.1203527
[19]
Liu CB, Itoh T, Arai K, Watanabe S (1999) Constitutive activation of JAK2 confers murine interleukin-3-independent survival and proliferation of BA/F3 cells. J Biol Chem 274: 6342–6349. doi: 10.1074/jbc.274.10.6342
[20]
Lord JD, McIntosh BC, Greenberg PD, Nelson BH (2000) The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. J Immunol Baltim Md 1950 164: 2533–2541. doi: 10.4049/jimmunol.164.5.2533
[21]
Nosaka T, Kitamura T (2002) Pim-1 expression is sufficient to induce cytokine independence in murine hematopoietic cells, but is dispensable for BCR-ABL-mediated transformation. Exp Hematol 30: 697–702. doi: 10.1016/s0301-472x(02)00808-1
[22]
Gar?on L, Rivat C, James C, Lacout C, Camara-Clayette V, et al. (2006) Constitutive activation of STAT5 and Bcl-xL overexpression can induce endogenous erythroid colony formation in human primary cells. Blood 108: 1551–1554. doi: 10.1182/blood-2005-10-009514
[23]
Gesbert F, Griffin JD (2000) Bcr/Abl activates transcription of the Bcl-X gene through STAT5. Blood 96: 2269–2276.
[24]
Chim C-S, Fung T-K, Cheung W-C, Liang R, Kwong Y-L (2004) SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 103: 4630–4635. doi: 10.1182/blood-2003-06-2007
[25]
He B, You L, Uematsu K, Zang K, Xu Z, et al. (2003) SOCS-3 is frequently silenced by hypermethylation and suppresses cell growth in human lung cancer. Proc Natl Acad Sci U S A 100: 14133–14138. doi: 10.1073/pnas.2232790100
[26]
Niwa Y, Kanda H, Shikauchi Y, Saiura A, Matsubara K, et al. (2005) Methylation silencing of SOCS-3 promotes cell growth and migration by enhancing JAK/STAT and FAK signalings in human hepatocellular carcinoma. Oncogene 24: 6406–6417. doi: 10.1038/sj.onc.1208788
[27]
Weber A, Hengge UR, Bardenheuer W, Tischoff I, Sommerer F, et al. (2005) SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene 24: 6699–6708. doi: 10.1038/sj.onc.1208818
[28]
Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, et al. (2005) STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci U S A 102: 6948–6953. doi: 10.1073/pnas.0501959102
[29]
Nelson EA, Sharma SV, Settleman J, Frank DA (2011) A chemical biology approach to developing STAT inhibitors: molecular strategies for accelerating clinical translation. Oncotarget 2: 518–524.
[30]
Müller J, Sperl B, Reindl W, Kiessling A, Berg T (2008) Discovery of chromone-based inhibitors of the transcription factor STAT5. Chembiochem Eur J Chem Biol 9: 723–727. doi: 10.1002/cbic.200700701
[31]
Luo C, Laaja P (2004) Inhibitors of JAKs/STATs and the kinases: a possible new cluster of drugs. Drug Discov Today 9: 268–275. doi: 10.1016/s1359-6446(03)03014-9
[32]
Quintás-Cardama A, Verstovsek S (2013) Molecular pathways: Jak/STAT pathway: mutations, inhibitors, and resistance. Clin Cancer Res Off J Am Assoc Cancer Res 19: 1933–1940. doi: 10.1158/1078-0432.ccr-12-0284
[33]
Warsch W, Walz C, Sexl V (2013) JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood 122: 2167–2175. doi: 10.1182/blood-2013-02-485573
[34]
Hayakawa F, Sugimoto K, Harada Y, Hashimoto N, Ohi N, et al. (2013) A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases. Blood Cancer J 3: e166. doi: 10.1038/bcj.2013.63
[35]
Weber A, Borghouts C, Brendel C, Moriggl R, Delis N, et al. (2013) The inhibition of stat5 by a Peptide aptamer ligand specific for the DNA binding domain prevents target gene transactivation and the growth of breast and prostate tumor cells. Pharm Basel Switz 6: 960–987. doi: 10.3390/ph6080960
[36]
Kim B-H, Won C, Lee Y-H, Choi JS, Noh KH, et al. (2013) Sophoraflavanone G induces apoptosis of human cancer cells by targeting upstream signals of STATs. Biochem Pharmacol 86: 950–959. doi: 10.1016/j.bcp.2013.08.009
[37]
Ma L, Clayton JR, Walgren RA, Zhao B, Evans RJ, et al. (2013) Discovery and characterization of LY2784544, a small-molecule tyrosine kinase inhibitor of JAK2V617F. Blood Cancer J 3: e109. doi: 10.1038/bcj.2013.6
[38]
Nelson EA, Walker SR, Weisberg E, Bar-Natan M, Barrett R, et al. (2011) The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors. Blood 117: 3421–3429. doi: 10.1182/blood-2009-11-255232
[39]
Nelson EA, Walker SR, Xiang M, Weisberg E, Bar-Natan M, et al. (2012) The STAT5 Inhibitor Pimozide Displays Efficacy in Models of Acute Myelogenous Leukemia Driven by FLT3 Mutations. Genes Cancer 3: 503–511. doi: 10.1177/1947601912466555
[40]
Hanan EJ, van Abbema A, Barrett K, Blair WS, Blaney J, et al. (2012) Discovery of potent and selective pyrazolopyrimidine janus kinase 2 inhibitors. J Med Chem 55: 10090–10107. doi: 10.1021/jm3012239
[41]
Kraus M, Wang Y, Aleksandrowicz D, Bachman E, Szewczak AA, et al. (2012) Efficacious intermittent dosing of a novel JAK2 inhibitor in mouse models of polycythemia vera. PloS One 7: e37207. doi: 10.1371/journal.pone.0037207
[42]
Yang J, Ikezoe T, Nishioka C, Furihata M, Yokoyama A (2010) AZ960, a novel Jak2 inhibitor, induces growth arrest and apoptosis in adult T-cell leukemia cells. Mol Cancer Ther 9: 3386–3395. doi: 10.1158/1535-7163.mct-10-0416
[43]
Ioannidis S, Lamb ML, Wang T, Almeida L, Block MH, et al. (2011) Discovery of 5-chloro-N2-[(1S)-1-(5-fluoropyrimidin-2?-yl)ethyl]-N4-(5-methyl-1H-pyrazol-3-yl)?pyrimidine-2,4-diamine(AZD1480) as a novel inhibitor of the Jak/Stat pathway. J Med Chem 54: 262–276. doi: 10.1021/jm1011319
[44]
Jatiani SS, Cosenza SC, Reddy MVR, Ha JH, Baker SJ, et al. (2010) A Non-ATP-Competitive Dual Inhibitor of JAK2 and BCR-ABL Kinases: Elucidation of a Novel Therapeutic Spectrum Based on Substrate Competitive Inhibition. Genes Cancer 1: 331–345. doi: 10.1177/1947601910371337
[45]
Müller J, Schust J, Berg T (2008) A high-throughput assay for signal transducer and activator of transcription 5b based on fluorescence polarization. Anal Biochem 375: 249–254. doi: 10.1016/j.ab.2008.01.017
[46]
Rascle A, Johnston JA, Amati B (2003) Deacetylase activity is required for recruitment of the basal transcription machinery and transactivation by STAT5. Mol Cell Biol 23: 4162–4173. doi: 10.1128/mcb.23.12.4162-4173.2003
[47]
Rascle A, Lees E (2003) Chromatin acetylation and remodeling at the Cis promoter during STAT5-induced transcription. Nucleic Acids Res 31: 6882–6890. doi: 10.1093/nar/gkg907
[48]
Gryder BE, Sodji QH, Oyelere AK (2012) Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 4: 505–524. doi: 10.4155/fmc.12.3
[49]
Evrot E, Ebel N, Romanet V, Roelli C, Andraos R, et al. (2013) JAK1/2 and Pan-deacetylase inhibitor combination therapy yields improved efficacy in preclinical mouse models of JAK2V617F-driven disease. Clin Cancer Res Off J Am Assoc Cancer Res 19: 6230–6241. doi: 10.1158/1078-0432.ccr-13-0905
[50]
Wang Y, Fiskus W, Chong DG, Buckley KM, Natarajan K, et al. (2009) Cotreatment with panobinostat and JAK2 inhibitor TG101209 attenuates JAK2V617F levels and signaling and exerts synergistic cytotoxic effects against human myeloproliferative neoplastic cells. Blood 114: 5024–5033. doi: 10.1182/blood-2009-05-222133
[51]
Guerini V, Barbui V, Spinelli O, Salvi A, Dellacasa C, et al. (2008) The histone deacetylase inhibitor ITF2357 selectively targets cells bearing mutated JAK2(V617F). Leukemia 22: 740–747. doi: 10.1038/sj.leu.2405049
[52]
Pietschmann K, Bolck HA, Buchwald M, Spielberg S, Polzer H, et al. (2012) Breakdown of the FLT3-ITD/STAT5 axis and synergistic apoptosis induction by the histone deacetylase inhibitor panobinostat and FLT3-specific inhibitors. Mol Cancer Ther 11: 2373–2383. doi: 10.1158/1535-7163.mct-12-0129
[53]
Nguyen T, Dai Y, Attkisson E, Kramer L, Jordan N, et al. (2011) HDAC inhibitors potentiate the activity of the BCR/ABL kinase inhibitor KW-2449 in imatinib-sensitive or -resistant BCR/ABL+ leukemia cells in vitro and in vivo. Clin Cancer Res Off J Am Assoc Cancer Res 17: 3219–3232. doi: 10.1158/1078-0432.ccr-11-0234
[54]
Batovska DI, Todorova IT (2010) Trends in utilization of the pharmacological potential of chalcones. Curr Clin Pharmacol 5: 1–29. doi: 10.2174/157488410790410579
[55]
Liu Y-C, Hsieh C-W, Wu C-C, Wung B-S (2007) Chalcone inhibits the activation of NF-kappaB and STAT3 in endothelial cells via endogenous electrophile. Life Sci 80: 1420–1430. doi: 10.1016/j.lfs.2006.12.040
[56]
Pandey MK, Sung B, Ahn KS, Aggarwal BB (2009) Butein suppresses constitutive and inducible signal transducer and activator of transcription (STAT) 3 activation and STAT3-regulated gene products through the induction of a protein tyrosine phosphatase SHP-1. Mol Pharmacol 75: 525–533. doi: 10.1124/mol.108.052548
[57]
Funakoshi-Tago M, Tago K, Nishizawa C, Takahashi K, Mashino T, et al. (2008) Licochalcone A is a potent inhibitor of TEL-Jak2-mediated transformation through the specific inhibition of Stat3 activation. Biochem Pharmacol 76: 1681–1693. doi: 10.1016/j.bcp.2008.09.012
[58]
Liu Y, Gao X, Deeb D, Arbab AS, Dulchavsky SA, et al. (2012) Anticancer agent xanthohumol inhibits IL-2 induced signaling pathways involved in T cell proliferation. J Exp Ther Oncol 10: 1–8.
[59]
Al-Rifai N, Rücker H, Amslinger S (2013) Opening or Closing the Lock? When Reactivity Is the Key to Biological Activity. Chem Eur J 19: 15384–15395. doi: 10.1002/chem.201302117
[60]
Amslinger S, Al-Rifai N, Winter K, W?rmann K, Scholz R, et al. (2013) Reactivity assessment of chalcones by a kinetic thiol assay. Org Biomol Chem 11: 549–554. doi: 10.1039/c2ob27163j
[61]
Amslinger S (2010) The tunable functionality of alpha,beta-unsaturated carbonyl compounds enables their differential application in biological systems. ChemMedChem 5: 351–356. doi: 10.1002/cmdc.200900499
[62]
Lozzio CB, Lozzio BB (1975) Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 45: 321–334.
[63]
Palacios R, Steinmetz M (1985) Il-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41: 727–734. doi: 10.1016/s0092-8674(85)80053-2
[64]
Onishi M, Nosaka T, Misawa K, Mui AL, Gorman D, et al. (1998) Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol 18: 3871–3879.
[65]
Rascle A, Neumann T, Raschta A-S, Neumann A, Heining E, et al. (2009) The LIM-homeodomain transcription factor LMX1B regulates expression of NF-kappa B target genes. Exp Cell Res 315: 76–96. doi: 10.1016/j.yexcr.2008.10.012
[66]
Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, et al. (1997) CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation. Blood 89: 3148–3154.
[67]
Elliott J, Hookham MB, Johnston JA (2008) The suppressors of cytokine signalling E3 ligases behave as tumour suppressors. Biochem Soc Trans 36: 464–468. doi: 10.1042/bst0360464
[68]
Fujihara M, Ikebuchi K, Maekawa TL, Wakamoto S, Ogiso C, et al. (1998) Lipopolysaccharide-induced desensitization of junB gene expression in a mouse macrophage-like cell line, P388D1. J Immunol Baltim Md 1950 161: 3659–3665.
[69]
Santos FPS, Verstovsek S (2011) JAK2 inhibitors: what's the true therapeutic potential? Blood Rev 25: 53–63. doi: 10.1016/j.blre.2010.10.004
[70]
Paukku K, Silvennoinen O (2004) STATs as critical mediators of signal transduction and transcription: lessons learned from STAT5. Cytokine Growth Factor Rev 15: 435–455. doi: 10.1016/j.cytogfr.2004.09.001
[71]
Schwaller J, Parganas E, Wang D, Cain D, Aster JC, et al. (2000) Stat5 is essential for the myelo- and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 6: 693–704. doi: 10.1016/s1097-2765(00)00067-8
[72]
De Groot RP, Raaijmakers JA, Lammers JW, Jove R, Koenderman L (1999) STAT5 activation by BCR-Abl contributes to transformation of K562 leukemia cells. Blood 94: 1108–1112.
[73]
Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, et al. (1999) Signal transducer and activator of transcription (STAT)5 activation by BCR/ABL is dependent on intact Src homology (SH)3 and SH2 domains of BCR/ABL and is required for leukemogenesis. J Exp Med 189: 1229–1242. doi: 10.1084/jem.189.8.1229
[74]
Ilaria RL Jr, Van Etten RA (1996) P210 and P190(BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members. J Biol Chem 271: 31704–31710. doi: 10.1074/jbc.271.49.31704
[75]
Roskoski R Jr (2003) STI-571: an anticancer protein-tyrosine kinase inhibitor. Biochem Biophys Res Commun 309: 709–717. doi: 10.1016/j.bbrc.2003.08.055
[76]
Simmler C, Hajirahimkhan A, Lankin DC, Bolton JL, Jones T, et al. (2013) Dynamic residual complexity of the isoliquiritigenin-liquiritigenin interconversion during bioassay. J Agric Food Chem 61: 2146–2157. doi: 10.1021/jf304445p
[77]
Levitzki A, Mishani E (2006) Tyrphostins and Other Tyrosine Kinase Inhibitors. Annu Rev Biochem 75: 93–109. doi: 10.1146/annurev.biochem.75.103004.142657
[78]
Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, et al. (1996) Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 379: 645–648. doi: 10.1038/379645a0
[79]
Xie Y, Kole S, Precht P, Pazin MJ, Bernier M (2009) S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling. Endocrinology 150: 1122–1131. doi: 10.1210/en.2008-1241
[80]
Butturini E, Cavalieri E, de Prati AC, Darra E, Rigo A, et al. (2011) Two naturally occurring terpenes, dehydrocostuslactone and costunolide, decrease intracellular GSH content and inhibit STAT3 activation. PloS One 6: e20174. doi: 10.1371/journal.pone.0020174
[81]
Butturini E, de Prati AC, Chiavegato G, Rigo A, Cavalieri E, et al. (2013) Mild oxidative stress induces S-glutathionylation of STAT3 and enhances chemosensitivity of tumoral cells to chemotherapeutic drugs. Free Radic Biol Med.
[82]
Mamoon NM, Smith JK, Chatti K, Lee S, Kundrapu K, et al. (2007) Multiple cysteine residues are implicated in Janus kinase 2-mediated catalysis. Biochemistry (Mosc) 46: 14810–14818. doi: 10.1021/bi701118u
[83]
Townsend DM, He L, Hutchens S, Garrett TE, Pazoles CJ, et al. (2008) NOV-002, a glutathione disulfide mimetic, as a modulator of cellular redox balance. Cancer Res 68: 2870–2877. doi: 10.1158/0008-5472.can-07-5957
[84]
Decker T, Kovarik P (2000) Serine phosphorylation of STATs. Oncogene 19: 2628–2637. doi: 10.1038/sj.onc.1203481
[85]
Yamashita H, Xu J, Erwin RA, Farrar WL, Kirken RA, et al. (1998) Differential control of the phosphorylation state of proline-juxtaposed serine residues Ser725 of Stat5a and Ser730 of Stat5b in prolactin-sensitive cells. J Biol Chem 273: 30218–30224. doi: 10.1074/jbc.273.46.30218
[86]
Beuvink I, Hess D, Flotow H, Hofsteenge J, Groner B, et al. (2000) Stat5a serine phosphorylation. Serine 779 is constitutively phosphorylated in the mammary gland, and serine 725 phosphorylation influences prolactin-stimulated in vitro DNA binding activity. J Biol Chem 275: 10247–10255. doi: 10.1074/jbc.275.14.10247