全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Caffeine Mediates Sustained Inactivation of Breast Cancer-Associated Myofibroblasts via Up-Regulation of Tumor Suppressor Genes

DOI: 10.1371/journal.pone.0090907

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Active cancer-associated fibroblasts (CAFs) or myofibroblasts play important roles not only in the development and progression of breast carcinomas, but also in their prognosis and treatment. Therefore, targeting these cells through suppressing their supportive procarcinogenic paracrine effects is mandatory for improving the current therapies that are mainly targeting tumor cells. To this end, we investigated the effect of the natural and pharmacologically safe molecule, caffeine, on CAF cells and their various procarcinogenic effects. Methodology/Principal Findings We have shown here that caffeine up-regulates the tumor suppressor proteins p16, p21, p53 and Cav-1, and reduces the expression/secretion of various cytokines (IL-6, TGF-β, SDF-1 and MMP-2), and down-regulates α-SMA. Furthermore, caffeine suppressed the migratory/invasiveness abilities of CAF cells through PTEN-dependent Akt/Erk1/2 inactivation. Moreover, caffeine reduced the paracrine pro-invasion/?migration effects of CAF cells on breast cancer cells. These results indicate that caffeine can inactivate breast stromal myofibroblasts. This has been confirmed by showing that caffeine also suppresses the paracrine pro-angiogenic effect of CAF cells through down-regulating HIF-1αand its downstream effector VEGF-A. Interestingly, these effects were sustained in absence of caffeine. Conclusion/Significance The present findings provide a proof of principle that breast cancer myofibroblasts can be inactivated, and thereby caffeine may provide a safe and effective prevention against breast tumor growth/recurrence through inhibition of the procarcinogenic effects of active stromal fibroblasts.

References

[1]  Jemal A, Bray F (2011) Center MM, Ferlay J, Ward E, et al (2011) Global cancer statistics. Ca Cancer J Clin 61: 69–90. doi: 10.3322/caac.20107
[2]  Aboussekhra A (2011) Role of cancer-associated fibroblasts in breast cancer development and prognosis. Int J Dev Biol 55: 841–849. doi: 10.1387/ijdb.113362aa
[3]  Franco OE, Shaw AK, Strand DW, Hayward SW (2009) Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol 21: 33–39. doi: 10.1016/j.semcdb.2009.10.010
[4]  Shimoda M, Mellody KT, Orimo A (2009) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21: 19–25. doi: 10.1016/j.semcdb.2009.10.002
[5]  Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, et al. (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121: 335–348. doi: 10.1016/j.cell.2005.02.034
[6]  Pinto MP, Badtke MM, Dudevoir ML, Harrell JC, Jacobsen BM, et al.. (2010) Vascular endothelial growth factor secreted by activated stroma enhances angiogenesis and hormone-independent growth of estrogen receptor-positive breast cancer. Cancer 70: 2655–2664. Epub 2010 Mar 2623.
[7]  Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6: 392–401. doi: 10.1038/nrc1877
[8]  Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7: 139–147. doi: 10.1038/nrc2067
[9]  Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75: 311–335. doi: 10.1021/np200906s
[10]  Bode AM, Dong Z (2007) The enigmatic effects of caffeine in cell cycle and cancer. Cancer Lett 247: 26–39. doi: 10.1016/j.canlet.2006.03.032
[11]  Okano J, Nagahara T, Matsumoto K, Murawaki Y (2008) Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin Pharmacol Toxicol 102: 543–551. doi: 10.1111/j.1742-7843.2008.00231.x
[12]  Ku BM, Lee YK, Jeong JY, Ryu J, Choi J, et al. (2011) Caffeine inhibits cell proliferation and regulates PKA/GSK3beta pathways in U87MG human glioma cells. Mol Cells 31: 275–279. doi: 10.1007/s10059-011-0027-5
[13]  Miwa S, Sugimoto N, Shirai T, Hayashi K, Nishida H, et al. (2011) Caffeine activates tumor suppressor PTEN in sarcoma cells. Int J Oncol 39: 465–472. doi: 10.3892/ijo.2011.1051
[14]  Conney AH, Zhou S, Lee MJ, Xie JG, Yang CS, et al. (2007) Stimulatory effect of oral administration of tea, coffee or caffeine on UVB-induced apoptosis in the epidermis of SKH-1 mice. Toxicol Appl Pharmacol 224: 209–213. doi: 10.1016/j.taap.2006.11.001
[15]  Hashimoto T, He Z, Ma WY, Schmid PC, Bode AM, et al. (2004) Caffeine inhibits cell proliferation by G0/G1 phase arrest in JB6 cells. Cancer Res 64: 3344–3349. doi: 10.1158/0008-5472.can-03-3453
[16]  Hawsawi NM, Ghebeh H, Hendrayani SF, Tulbah A, Al-Eid M, et al. (2008) Breast carcinoma-associated fibroblasts and their counterparts display neoplastic-specific changes. Cancer Res 68: 2717–2725. doi: 10.1158/0008-5472.can-08-0192
[17]  Al-Mohanna MA, Al-Khalaf HH, Al-Yousef N, Aboussekhra A (2007) The p16INK4a tumor suppressor controls p21WAF1 induction in response to ultraviolet light. Nucleic Acids Res 35: 223–233. doi: 10.1093/nar/gkl1075
[18]  Al-Ansari MM, Hendrayani SF, Shehata AI, Aboussekhra A (2013) p16(INK4A) Represses the paracrine tumor-promoting effects of breast stromal fibroblasts. Oncogene 32: 2356–2364. doi: 10.1038/onc.2012.270
[19]  Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, et al. (1997) Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137: 481–492. doi: 10.1083/jcb.137.2.481
[20]  Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, et al. (2005) Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell 20: 539–550. doi: 10.1016/j.molcel.2005.10.033
[21]  Blanco-Aparicio C, Renner O, Leal JF, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28: 1379–1386. doi: 10.1093/carcin/bgm052
[22]  Weng LP, Smith WM, Brown JL, Eng C (2001) PTEN inhibits insulin-stimulated MEK/MAPK activation and cell growth by blocking IRS-1 phosphorylation and IRS-1/Grb-2/Sos complex formation in a breast cancer model. Hum Mol Genet 10: 605–616. doi: 10.1093/hmg/10.6.605
[23]  Milanini J, Vinals F, Pouyssegur J, Pages G (1998) p42/p44 MAP kinase module plays a key role in the transcriptional regulation of the vascular endothelial growth factor gene in fibroblasts. J Biol Chem 273: 18165–18172. doi: 10.1074/jbc.273.29.18165
[24]  Berra E, Pages G, Pouyssegur J (2000) MAP kinases and hypoxia in the control of VEGF expression. Cancer Metastasis Rev 19: 139–145.
[25]  Xin H, Brown JA, Gong C, Fan H, Brewer G, et al. (2012) Association of the von Hippel-Lindau protein with AUF1 and posttranscriptional regulation of VEGFA mRNA. Mol Cancer Res 10: 108–120. doi: 10.1158/1541-7786.mcr-11-0435
[26]  Merdzhanova G, Gout S, Keramidas M, Edmond V, Coll JL, et al. (2010) The transcription factor E2F1 and the SR protein SC35 control the ratio of pro-angiogenic versus antiangiogenic isoforms of vascular endothelial growth factor-A to inhibit neovascularization in vivo. Oncogene 29: 5392–5403. doi: 10.1038/onc.2010.281
[27]  Essafi-Benkhadir K, Onesto C, Stebe E, Moroni C, Pages G (2007) Tristetraprolin inhibits Ras-dependent tumor vascularization by inducing vascular endothelial growth factor mRNA degradation. Mol Biol Cell 18: 4648–4658. doi: 10.1091/mbc.e07-06-0570
[28]  Moskovits N, Kalinkovich A, Bar J, Lapidot T, Oren M (2006) p53 Attenuates cancer cell migration and invasion through repression of SDF-1/CXCL12 expression in stromal fibroblasts. Cancer Res 66: 10671–10676. doi: 10.1158/0008-5472.can-06-2323
[29]  Song MS, Salmena L, Pandolfi PP (2012) The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol 13: 283–296. doi: 10.1038/nrm3330
[30]  Foukas LC, Daniele N, Ktori C, Anderson KE, Jensen J, et al. (2002) Direct effects of caffeine and theophylline on p110 delta and other phosphoinositide 3-kinases. Differential effects on lipid kinase and protein kinase activities. J Biol Chem 277: 37124–37130. doi: 10.1074/jbc.m202101200
[31]  Saiki S, Sasazawa Y, Imamichi Y, Kawajiri S, Fujimaki T, et al. (2011) Caffeine induces apoptosis by enhancement of autophagy via PI3K/Akt/mTOR/p70S6K inhibition. Autophagy 7: 176–187. doi: 10.4161/auto.7.2.14074
[32]  Merighi S, Benini A, Mirandola P, Gessi S, Varani K, et al. (2007) Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 72: 395–406. doi: 10.1124/mol.106.032920
[33]  Al-Ansari MM, Hendrayani SF, Tulbah A, Al-Tweigeri T, Shehata AI, et al. (2012) p16INK4A represses breast stromal fibroblasts migration/invasion and their VEGF-A-dependent promotion of angiogenesis through Akt inhibition. Neoplasia 14: 1269–1277.
[34]  Ghahremani MF, Goossens S, Nittner D, Bisteau X, Bartunkova S, et al. (2013) p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death Differ 20: 888–897. doi: 10.1038/cdd.2013.12
[35]  Skinner HD, Zheng JZ, Fang J, Agani F, Jiang BH (2004) Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1alpha, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. J Biol Chem 279: 45643–45651. doi: 10.1074/jbc.m404097200
[36]  Wang FS, Wang CJ, Chen YJ, Chang PR, Huang YT, et al. (2004) Ras induction of superoxide activates ERK-dependent angiogenic transcription factor HIF-1alpha and VEGF-A expression in shock wave-stimulated osteoblasts. J Biol Chem 279: 10331–10337. doi: 10.1074/jbc.m308013200
[37]  Li H, Jin SY, Son HJ, Seo JH, Jeong GB (2013) Caffeine-induced endothelial cell death and the inhibition of angiogenesis. Anat Cell Biol 46: 57–67. doi: 10.5115/acb.2013.46.1.57
[38]  D’Anello L, Sansone P, Storci G, Mitrugno V, D’Uva G, et al. (2010) Epigenetic control of the basal-like gene expression profile via Interleukin-6 in breast cancer cells. Mol Cancer 9: 300. doi: 10.1186/1476-4598-9-300
[39]  Reynolds PA, Sigaroudinia M, Zardo G, Wilson MB, Benton GM, et al. (2006) Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem 281: 24790–24802. doi: 10.1074/jbc.m604175200
[40]  Ganmaa D, Willett WC, Li TY, Feskanich D, van Dam RM, et al. (2008) Coffee, tea, caffeine and risk of breast cancer: a 22-year follow-up. Int J Cancer 122: 2071–2076. doi: 10.1002/ijc.23336
[41]  Abel EL, Hendrix SO, McNeeley SG, Johnson KC, Rosenberg CA, et al. (2007) Daily coffee consumption and prevalence of nonmelanoma skin cancer in Caucasian women. Eur J Cancer Prev 16: 446–452. doi: 10.1097/01.cej.0000243850.59362.73
[42]  Wolfrom DM, Rao AR, Welsch CW (1991) Caffeine inhibits development of benign mammary gland tumors in carcinogen-treated female Sprague-Dawley rats. Breast Cancer Res Treat 19: 269–275. doi: 10.1007/bf01961163
[43]  Yang H, Rouse J, Lukes L, Lancaster M, Veenstra T, et al. (2004) Caffeine suppresses metastasis in a transgenic mouse model: a prototype molecule for prophylaxis of metastasis. Clin Exp Metastasis 21: 719–735. doi: 10.1007/s10585-004-8251-4
[44]  Lou YR, Lu YP, Xie JG, Huang MT, Conney AH (1999) Effects of oral administration of tea, decaffeinated tea, and caffeine on the formation and growth of tumors in high-risk SKH-1 mice previously treated with ultraviolet B light. Nutr Cancer 33: 146–153. doi: 10.1207/s15327914nc330205
[45]  Lelo A, Miners JO, Robson R, Birkett DJ (1986) Assessment of caffeine exposure: caffeine content of beverages, caffeine intake, and plasma concentrations of methylxanthines. Clin Pharmacol Ther 39: 54–59.
[46]  Blanchard J, Sawers SJ (1983) The absolute bioavailability of caffeine in man. Eur J Clin Pharmacol 24: 93–98. doi: 10.1007/bf00613933

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133