全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Investigating the Interplay between Nucleoid-Associated Proteins, DNA Curvature, and CRISPR Elements Using Comparative Genomics

DOI: 10.1371/journal.pone.0090940

Full-Text   Cite this paper   Add to My Lib

Abstract:

Many prokaryotic and eukaryotic genomes feature a characteristic periodic signal in distribution of short runs of A or T (A-tracts) phased with the DNA helical period of ~10–11 bp. Such periodic spacing of A-tracts has been associated with intrinsic DNA curvature. In eukaryotes, this periodicity is a major component of the nucleosome positioning signal but its physiological role in prokaryotes is not clear. One hypothesis centers on possible role of intrinsic DNA bends in nucleoid compaction. We use comparative genomics to investigate possible relationship between the A-tract periodicity and nucleoid-associated proteins in prokaryotes. We found that genomes with DNA-bridging proteins tend to exhibit stronger A-tract periodicity, presumably indicative of more prevalent intrinsic DNA curvature. A weaker relationship was detected for nucleoid-associated proteins that do not form DNA bridges. We consider these results an indication that intrinsic DNA curvature acts collaboratively with DNA-bridging proteins in maintaining the compact structure of the nucleoid, and that previously observed differences among prokaryotic genomes in terms DNA curvature-related sequence periodicity may reflect differences in nucleoid organization. We subsequently investigated the relationship between A-tract periodicity and presence of CRISPR elements and we found that genomes with CRISPR tend to have stronger A-tract periodicity. This result is consistent with our earlier hypothesis that extensive A-tract periodicity could help protect the chromosome against integration of prophages, possibly due to its role in compaction of the nucleoid.

References

[1]  Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8: 185–195. doi: 10.1038/nrmicro2261
[2]  Thanbichler M, Shapiro L (2006) Chromosome organization and segregation in bacteria. J Struct Biol 156: 292–303. doi: 10.1016/j.jsb.2006.05.007
[3]  Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13: 773–780. doi: 10.1016/j.mib.2010.09.013
[4]  Tolstorukov MY, Virnik KM, Adhya S, Zhurkin VB (2005) A-tract clusters may facilitate DNA packaging in bacterial nucleoid. Nucleic Acids Res 33: 3907–3918. doi: 10.1093/nar/gki699
[5]  Herzel H, Weiss O, Trifonov EN (1999) 10–11 bp periodicities in complete genomes reflect protein structure and DNA folding. Bioinformatics 15: 187–193. doi: 10.1093/bioinformatics/15.3.187
[6]  Mrázek J (2010) Comparative analysis of sequence periodicity among prokaryotic genomes points to differences in nucleoid structure and a relationship to gene expression. J Bacteriol 192: 3763–3772. doi: 10.1128/jb.00149-10
[7]  Schieg P, Herzel H (2004) Periodicities of 10–11 bp as indicators of the supercoiled state of genomic DNA. J Mol Biol 343: 891–901. doi: 10.1016/j.jmb.2004.08.068
[8]  Bolshoy A, Nevo E (2000) Ecologic genomics of DNA: upstream bending in prokaryotic promoters. Genome Res 10: 1185–1193. doi: 10.1101/gr.10.8.1185
[9]  Kozobay-Avraham L, Hosid S, Bolshoy A (2006) Involvement of DNA curvature in intergenic regions of prokaryotes. Nucleic Acids Res 34: 2316–2327. doi: 10.1093/nar/gkl230
[10]  Herzel H, Weiss O, Trifonov EN (1998) Sequence periodicity in complete genomes of archaea suggests positive supercoiling. J Biomol Struct Dyn 16: 341–345. doi: 10.1080/07391102.1998.10508251
[11]  Abel J, Mrázek J (2012) Differences in DNA curvature-related sequence periodicity between prokaryotic chromosomes and phages, and relationship to chromosomal prophage content. Bmc Genomics 13: 188. doi: 10.1186/1471-2164-13-188
[12]  Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712. doi: 10.1126/science.1138140
[13]  Koo HS, Wu HM, Crothers DM (1986) DNA bending at adenine. thymine tracts. Nature 320: 501–506. doi: 10.1038/320501a0
[14]  Trifonov EN, Sussman JL (1980) The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci U S A 77: 3816–3820. doi: 10.1073/pnas.77.7.3816
[15]  Ulanovsky LE, Trifonov EN (1987) Estimation of Wedge Components in Curved DNA. Nature 326: 720–722. doi: 10.1038/326720a0
[16]  Mrázek J, Chaudhari T, Basu A (2011) PerPlot & PerScan: tools for analysis of DNA curvature-related periodicity in genomic nucleotide sequences. Microb Inform Exp 1: 13. doi: 10.1186/2042-5783-1-13
[17]  Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32: D277–280. doi: 10.1093/nar/gkh063
[18]  Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278: 631–637. doi: 10.1126/science.278.5338.631
[19]  Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV (2013) OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res 41: D358–365. doi: 10.1093/nar/gks1116
[20]  Robison K, McGuire AM, Church GM (1998) A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. Journal of Molecular Biology 284: 241–254. doi: 10.1006/jmbi.1998.2160
[21]  Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8: 172. doi: 10.1186/1471-2105-8-172
[22]  Cho BK, Knight EM, Barrett CL, Palsson BO (2008) Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18: 900–910. doi: 10.1101/gr.070276.107
[23]  Dame RT, Wyman C, Goosen N (2001) Structural basis for preferential binding of H-NS to curved DNA. Biochimie 83: 231–234. doi: 10.1016/s0300-9084(00)01213-x
[24]  Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167–170. doi: 10.1126/science.1179555
[25]  Medina-Aparicio L, Rebollar-Flores JE, Gallego-Hernandez AL, Vazquez A, Olvera L, et al. (2011) The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi. J Bacteriol 193: 2396–2407. doi: 10.1128/jb.01480-10
[26]  Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, et al. (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75: 1495–1512. doi: 10.1111/j.1365-2958.2010.07073.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133