[1] | Dillon SC, Dorman CJ (2010) Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8: 185–195. doi: 10.1038/nrmicro2261
|
[2] | Thanbichler M, Shapiro L (2006) Chromosome organization and segregation in bacteria. J Struct Biol 156: 292–303. doi: 10.1016/j.jsb.2006.05.007
|
[3] | Browning DF, Grainger DC, Busby SJ (2010) Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13: 773–780. doi: 10.1016/j.mib.2010.09.013
|
[4] | Tolstorukov MY, Virnik KM, Adhya S, Zhurkin VB (2005) A-tract clusters may facilitate DNA packaging in bacterial nucleoid. Nucleic Acids Res 33: 3907–3918. doi: 10.1093/nar/gki699
|
[5] | Herzel H, Weiss O, Trifonov EN (1999) 10–11 bp periodicities in complete genomes reflect protein structure and DNA folding. Bioinformatics 15: 187–193. doi: 10.1093/bioinformatics/15.3.187
|
[6] | Mrázek J (2010) Comparative analysis of sequence periodicity among prokaryotic genomes points to differences in nucleoid structure and a relationship to gene expression. J Bacteriol 192: 3763–3772. doi: 10.1128/jb.00149-10
|
[7] | Schieg P, Herzel H (2004) Periodicities of 10–11 bp as indicators of the supercoiled state of genomic DNA. J Mol Biol 343: 891–901. doi: 10.1016/j.jmb.2004.08.068
|
[8] | Bolshoy A, Nevo E (2000) Ecologic genomics of DNA: upstream bending in prokaryotic promoters. Genome Res 10: 1185–1193. doi: 10.1101/gr.10.8.1185
|
[9] | Kozobay-Avraham L, Hosid S, Bolshoy A (2006) Involvement of DNA curvature in intergenic regions of prokaryotes. Nucleic Acids Res 34: 2316–2327. doi: 10.1093/nar/gkl230
|
[10] | Herzel H, Weiss O, Trifonov EN (1998) Sequence periodicity in complete genomes of archaea suggests positive supercoiling. J Biomol Struct Dyn 16: 341–345. doi: 10.1080/07391102.1998.10508251
|
[11] | Abel J, Mrázek J (2012) Differences in DNA curvature-related sequence periodicity between prokaryotic chromosomes and phages, and relationship to chromosomal prophage content. Bmc Genomics 13: 188. doi: 10.1186/1471-2164-13-188
|
[12] | Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709–1712. doi: 10.1126/science.1138140
|
[13] | Koo HS, Wu HM, Crothers DM (1986) DNA bending at adenine. thymine tracts. Nature 320: 501–506. doi: 10.1038/320501a0
|
[14] | Trifonov EN, Sussman JL (1980) The pitch of chromatin DNA is reflected in its nucleotide sequence. Proc Natl Acad Sci U S A 77: 3816–3820. doi: 10.1073/pnas.77.7.3816
|
[15] | Ulanovsky LE, Trifonov EN (1987) Estimation of Wedge Components in Curved DNA. Nature 326: 720–722. doi: 10.1038/326720a0
|
[16] | Mrázek J, Chaudhari T, Basu A (2011) PerPlot & PerScan: tools for analysis of DNA curvature-related periodicity in genomic nucleotide sequences. Microb Inform Exp 1: 13. doi: 10.1186/2042-5783-1-13
|
[17] | Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32: D277–280. doi: 10.1093/nar/gkh063
|
[18] | Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278: 631–637. doi: 10.1126/science.278.5338.631
|
[19] | Waterhouse RM, Tegenfeldt F, Li J, Zdobnov EM, Kriventseva EV (2013) OrthoDB: a hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res 41: D358–365. doi: 10.1093/nar/gks1116
|
[20] | Robison K, McGuire AM, Church GM (1998) A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. Journal of Molecular Biology 284: 241–254. doi: 10.1006/jmbi.1998.2160
|
[21] | Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8: 172. doi: 10.1186/1471-2105-8-172
|
[22] | Cho BK, Knight EM, Barrett CL, Palsson BO (2008) Genome-wide analysis of Fis binding in Escherichia coli indicates a causative role for A-/AT-tracts. Genome Res 18: 900–910. doi: 10.1101/gr.070276.107
|
[23] | Dame RT, Wyman C, Goosen N (2001) Structural basis for preferential binding of H-NS to curved DNA. Biochimie 83: 231–234. doi: 10.1016/s0300-9084(00)01213-x
|
[24] | Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327: 167–170. doi: 10.1126/science.1179555
|
[25] | Medina-Aparicio L, Rebollar-Flores JE, Gallego-Hernandez AL, Vazquez A, Olvera L, et al. (2011) The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi. J Bacteriol 193: 2396–2407. doi: 10.1128/jb.01480-10
|
[26] | Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, et al. (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75: 1495–1512. doi: 10.1111/j.1365-2958.2010.07073.x
|