Regulation of human placental syncytiotrophoblast renewal by cytotrophoblast migration, aggregation/fusion and differentiation is essential for successful pregnancy. In several tissues, these events are regulated by intermediate conductance Ca2+-activated K+ channels (IKCa), in part through their ability to regulate cell volume. We used cytotrophoblasts in primary culture to test the hypotheses that IKCa participate in the formation of multinucleated syncytiotrophoblast and in syncytiotrophoblast volume homeostasis. Cytotrophoblasts were isolated from normal term placentas and cultured for 66 h. This preparation recreates syncytiotrophoblast formation in vivo, as mononucleate cells (15 h) fuse into multinucleate syncytia (66 h) concomitant with elevated secretion of human chorionic gonadotropin (hCG). Cells were treated with the IKCa inhibitor TRAM-34 (10 μM) or activator DCEBIO (100 μM). Culture medium was collected to measure hCG secretion and cells fixed for immunofluorescence with anti-IKCa and anti-desmoplakin antibodies to assess IKCa expression and multinucleation respectively. K+ channel activity was assessed by measuring 86Rb efflux at 66 h. IKCa immunostaining was evident in nucleus, cytoplasm and surface of mono- and multinucleate cells. DCEBIO increased 86Rb efflux 8.3-fold above control and this was inhibited by TRAM-34 (85%; p<0.0001). Cytotrophoblast multinucleation increased 12-fold (p<0.05) and hCG secretion 20-fold (p<0.05), between 15 and 66 h. Compared to controls, DCEBIO reduced multinucleation by 42% (p<0.05) and hCG secretion by 80% (p<0.05). TRAM-34 alone did not affect cytotrophoblast multinucleation or hCG secretion. Hyposmotic solution increased 86Rb efflux 3.8-fold (p<0.0001). This effect was dependent on extracellular Ca2+, inhibited by TRAM-34 and 100 nM charybdotoxin (85% (p<0.0001) and 43% respectively) but unaffected by 100 nM apamin. In conclusion, IKCa are expressed in cytotrophoblasts and their activation inhibits the formation of multinucleated cells in vitro. IKCa are stimulated by syncytiotrophoblast swelling implicating a role in syncytiotrophoblast volume homeostasis. Inappropriate activation of IKCa in pathophysiological conditions could compromise syncytiotrophoblast turnover and volume homeostasis in pregnancy disease.
References
[1]
Huppertz B, Gauster M (2011) Trophoblast Fusion. In: Dittmar T, Z?nker KS, editors. Cell Fusion in Health and Disease: Springer Netherlands. pp. 81–95.
[2]
Longtine MS, Chen B, Odibo AO, Zhong Y, Nelson DM (2012) Caspase-mediated apoptosis of trophoblasts in term human placental villi is restricted to cytotrophoblasts and absent from the multinucleated syncytiotrophoblast. Reproduction 143: 107–121. doi: 10.1530/rep-11-0340
[3]
Longtine MS, Barton A, Chen B, Nelson DM (2012) Live-cell imaging shows apoptosis initiates locally and propagates as a wave throughout syncytiotrophoblasts in primary cultures of human placental villous trophoblasts. Placenta 33: 971–976. doi: 10.1016/j.placenta.2012.09.013
[4]
Greenwood SL, Brown PD, Edwards D, Sibley CP (1993) Patch clamp studies of human placental cytotrophoblast cells in culture. Placenta 14: 53–68. doi: 10.1016/s0143-4004(05)80282-6
[5]
Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF 3rd (1986) Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology 118: 1567–1582. doi: 10.1210/endo-118-4-1567
[6]
Douglas GC, King BF (1990) Differentiation of human trophoblast cells in vitro as revealed by immunocytochemical staining of desmoplakin and nuclei. J Cell Sci 96 (Pt 1): 131–141.
[7]
Douglas GC, King BF (1989) Isolation of pure villous cytotrophoblast from term human placenta using immunomagnetic microspheres. J Immunol Methods 119: 259–268. doi: 10.1016/0022-1759(89)90405-5
[8]
Yang M, Lei ZM, Rao Ch V (2003) The central role of human chorionic gonadotropin in the formation of human placental syncytium. Endocrinology 144: 1108–1120. doi: 10.1210/en.2002-220922
[9]
Cronier L, Bastide B, Herve JC, Deleze J, Malassine A (1994) Gap junctional communication during human trophoblast differentiation: influence of human chorionic gonadotropin. Endocrinology 135: 402–408. doi: 10.1210/endo.135.1.8013377
[10]
Lim KH, Zhou Y, Janatpour M, McMaster M, Bass K, et al. (1997) Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am J Pathol 151: 1809–1818.
[11]
Crocker IP, Tansinda DM, Baker PN (2004) Altered cell kinetics in cultured placental villous explants in pregnancies complicated by pre-eclampsia and intrauterine growth restriction. J Pathol 204: 11–18. doi: 10.1002/path.1610
[12]
Huppertz B, Kaufmann P, Kingdom J (2002) Trophoblast turnover in health and disease. Fetal Matern Med Rev 13: 103–118. doi: 10.1017/s0965539502000220
[13]
Smith SC, Baker PN, Symonds EM (1997) Increased placental apoptosis in intrauterine growth restriction. Am J Obstet Gynecol 177: 1395–1401. doi: 10.1016/s0002-9378(97)70081-4
[14]
Higgins L, Mills TA, Greenwood SL, Cowley EJ, Sibley CP, et al. (2012) Maternal obesity and its effect on placental cell turnover. J Matern Fetal Neonatal Med 26: 783–788. doi: 10.3109/14767058.2012.760539
[15]
Arnholdt H, Meisel F, Fandrey K, Lohrs U (1991) Proliferation of villous trophoblast of the human placenta in normal and abnormal pregnancies. Virchows Arch B Cell Pathol Incl Mol Pathol 60: 365–372. doi: 10.1007/bf02899568
[16]
Brown LM, Lacey HA, Baker PN, Crocker IP (2005) E-cadherin in the assessment of aberrant placental cytotrophoblast turnover in pregnancies complicated by pre-eclampsia. Histochem Cell Biol 124: 499–506. doi: 10.1007/s00418-005-0051-7
[17]
Allaire AD, Ballenger KA, Wells SR, McMahon MJ, Lessey BA (2000) Placental apoptosis in preeclampsia. Obstet Gynecol 96: 271–276. doi: 10.1016/s0029-7844(00)00895-4
[18]
Ishihara N, Matsuo H, Murakoshi H, Laoag-Fernandez JB, Samoto T, et al. (2002) Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol 186: 158–166. doi: 10.1067/mob.2002.119176
[19]
Leung DN, Smith SC, To KF, Sahota DS, Baker PN (2001) Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 184: 1249–1250. doi: 10.1067/mob.2001.112906
[20]
Correa RR, Gilio DB, Cavellani CL, Paschoini MC, Oliveira FA, et al. (2008) Placental morphometrical and histopathology changes in the different clinical presentations of hypertensive syndromes in pregnancy. Arch Gynecol Obstet 277: 201–206. doi: 10.1007/s00404-007-0452-z
[21]
Huppertz B, Kingdom JC (2004) Apoptosis in the trophoblast-role of apoptosis in placental morphogenesis. J Soc Gynecol Investig 11: 353–362. doi: 10.1016/j.jsgi.2004.06.002
[22]
Langbein M, Strick R, Strissel PL, Vogt N, Parsch H, et al. (2008) Impaired cytotrophoblast cell-cell fusion is associated with reduced Syncytin and increased apoptosis in patients with placental dysfunction. Mol Reprod Dev 75: 175–183. doi: 10.1002/mrd.20729
[23]
Mi S, Lee X, Li X, Veldman GM, Finnerty H, et al. (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403: 785–789.
[24]
Lee X, Keith JC Jr, Stumm N, Moutsatsos I, McCoy JM, et al. (2001) Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia. Placenta 22: 808–812. doi: 10.1053/plac.2001.0722
[25]
Frendo JL, Olivier D, Cheynet V, Blond JL, Bouton O, et al. (2003) Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol 23: 3566–3574. doi: 10.1128/mcb.23.10.3566-3574.2003
[26]
Vargas A, Moreau J, Landry S, LeBellego F, Toufaily C, et al. (2009) Syncytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol 392: 301–318. doi: 10.1016/j.jmb.2009.07.025
[27]
Keith JC, Jr., Pijnenborg R, Van Assche FA (2002) Placental syncytin expression in normal and preeclamptic pregnancies. Am J Obstet Gynecol 187: 1122–1123; author reply 1123–1124.
[28]
Vargas A, Toufaily C, LeBellego F, Rassart E, Lafond J, et al. (2011) Reduced expression of both syncytin 1 and syncytin 2 correlates with severity of preeclampsia. Reprod Sci 18: 1085–1091. doi: 10.1177/1933719111404608
[29]
Mayhew TM (2009) A stereological perspective on placental morphology in normal and complicated pregnancies. J Anat 215: 77–90. doi: 10.1111/j.1469-7580.2008.00994.x
[30]
Mayhew TM, Manwani R, Ohadike C, Wijesekara J, Baker PN (2007) The placenta in pre-eclampsia and intrauterine growth restriction: studies on exchange surface areas, diffusion distances and villous membrane diffusive conductances. Placenta 28: 233–238. doi: 10.1016/j.placenta.2006.02.011
[31]
Neylon CB, Lang RJ, Fu Y, Bobik A, Reinhart PH (1999) Molecular cloning and characterization of the intermediate-conductance Ca(2+)-activated K(+) channel in vascular smooth muscle: relationship between K(Ca) channel diversity and smooth muscle cell function. Circ Res 85: e33–43. doi: 10.1161/01.res.85.9.e33
[32]
Wei AD, Gutman GA, Aldrich R, Chandy KG, Grissmer S, et al. (2005) International Union of Pharmacology. LII. Nomenclature and Molecular Relationships of Calcium-Activated Potassium Channels. Pharmacol Rev 57: 463–472. doi: 10.1124/pr.57.4.9
[33]
Jensen BS, Strobak D, Christophersen P, Jorgensen TD, Hansen C, et al. (1998) Characterization of the cloned human intermediate-conductance Ca2+-activated K+ channel. Am J Physiol Cell Physiol 275: C848–856.
[34]
Weskamp M, Seidl W, Grissmer S (2000) Characterization of the increase in [Ca(2+)](i) during hypotonic shock and the involvement of Ca(2+)-activated K(+) channels in the regulatory volume decrease in human osteoblast-like cells. J Membr Biol 178: 11–20. doi: 10.1007/s002320010010
[35]
Wang J, Morishima S, Okada Y (2003) IK channels are involved in the regulatory volume decrease in human epithelial cells. Am J Physiol Cell Physiol 284: C77–84. doi: 10.1152/ajpcell.00132.2002
[36]
Barfod ET, Moore AL, Roe MW, Lidofsky SD (2007) Ca2+-activated IK1 Channels Associate with Lipid Rafts upon Cell Swelling and Mediate Volume Recovery. J Biol Chem 282: 8984–8993. doi: 10.1074/jbc.m607730200
[37]
Vázquez E, Nobles M, Valverde MA (2001) Defective regulatory volume decrease in human cystic fibrosis tracheal cells because of altered regulation of intermediate conductance Ca2+-dependent potassium channels. Proc Natl Acad Sci U S A 98: 5329–5334. doi: 10.1073/pnas.091096498
[38]
Sand P, Anger A, Rydqvist B (2004) Hypotonic stress activates an intermediate conductance K+ channel in human colonic crypt cells. Acta Physiol Scand 182: 361–368. doi: 10.1111/j.1365-201x.2004.01366.x
[39]
Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of cell volume regulation in vertebrates. Physiol Rev 89: 193–277. doi: 10.1152/physrev.00037.2007
[40]
Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, et al. (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78: 247–306.
[41]
Tao R, Lau CP, Tse HF, Li GR (2008) Regulation of cell proliferation by intermediate-conductance Ca2+-activated potassium and volume-sensitive chloride channels in mouse mesenchymal stem cells. Am J Physiol Cell Physiol 295: C1409–1416. doi: 10.1152/ajpcell.00268.2008
[42]
Cheong A, Bingham AJ, Li J, Kumar B, Sukumar P, et al. (2005) Downregulated REST transcription factor is a switch enabling critical potassium channel expression and cell proliferation. Mol Cell 20: 45–52. doi: 10.1016/j.molcel.2005.08.030
[43]
Millership JE, Devor DC, Hamilton KL, Balut CM, Bruce JI, et al. (2011) Calcium-activated K+ channels increase cell proliferation independent of K+ conductance. Am J Physiol Cell Physiol 300: C792–802. doi: 10.1152/ajpcell.00274.2010
Fioretti B, Pietrangelo T, Catacuzzeno L, Franciolini F (2005) Intermediate-conductance Ca2+-activated K+ channel is expressed in C2C12 myoblasts and is downregulated during myogenesis. Am J Physiol Cell Physiol 289: C89–C96. doi: 10.1152/ajpcell.00369.2004
[46]
Schwab A, Fabian A, Hanley PJ, Stock C (2012) Role of ion channels and transporters in cell migration. Physiol Rev 92: 1865–1913. doi: 10.1152/physrev.00018.2011
[47]
Schwab A, Wulf A, Schulz C, Kessler W, Nechyporuk-Zloy V, et al. (2006) Subcellular distribution of calcium-sensitive potassium channels (IK1) in migrating cells. J Cell Physiol 206: 86–94. doi: 10.1002/jcp.20434
[48]
Schwab A, Gabriel K, Finsterwalder F, Folprecht G, Greger R, et al. (1995) Polarized ion transport during migration of transformed Madin-Darby canine kidney cells. Pflugers Arch 430: 802–807. doi: 10.1007/bf00386179
[49]
Lang PA, Kaiser S, Myssina S, Wieder T, Lang F, et al. (2003) Role of Ca2+-activated K+ channels in human erythrocyte apoptosis. Am J Physiol Cell Physiol 285: C1553–1560. doi: 10.1152/ajpcell.00186.2003
[50]
Grunnet M, MacAulay N, Jorgensen NK, Jensen S, Olesen SP, et al. (2002) Regulation of cloned, Ca2+-activated K+ channels by cell volume changes. Pflugers Arch 444: 167–177. doi: 10.1007/s00424-002-0782-4
[51]
Williams JL, Fyfe GK, Sibley CP, Baker PN, Greenwood SL (2008) K+ channel inhibition modulates the biochemical and morphological differentiation of human placental cytotrophoblast cells in vitro. Am J Physiol Regul Integr Comp Physiol 295: R1204–1213. doi: 10.1152/ajpregu.00193.2008
[52]
Clarson LH, Greenwood SL, Mylona P, Sibley CP (2001) Inwardly rectifying K(+) current and differentiation of human placental cytotrophoblast cells in culture. Placenta 22: 328–336. doi: 10.1053/plac.2000.0622
[53]
Clarson LH, Roberts VH, Greenwood SL, Elliott AC (2002) ATP-stimulated Ca(2+)-activated K(+) efflux pathway and differentiation of human placental cytotrophoblast cells. Am J Physiol Regul Integr Comp Physiol 282: R1077–1085.
[54]
Desforges M, Parsons L, Westwood M, Sibley CP, Greenwood SL (2013) Taurine transport in human placental trophoblast is important for regulation of cell differentiation and survival. Cell Death Dis 4: e559. doi: 10.1038/cddis.2013.81
Robertson EG, Cheyne GA (1972) Plasma biochemistry in relation to oedema of pregnancy. J Obstet Gynaecol Br Commonw 79: 769–776. doi: 10.1111/j.1471-0528.1972.tb12918.x
[57]
Siman CM, Sibley CP, Jones CJ, Turner MA, Greenwood SL (2001) The functional regeneration of syncytiotrophoblast in cultured explants of term placenta. Am J Physiol Regul Integr Comp Physiol 280: R1116–1122.
[58]
Chen Y, Sánchez A, Rubio ME, Kohl T, Pardo LA, et al. (2011) Functional KV10.1 Channels Localize to the Inner Nuclear Membrane. PLoS One 6: e19257. doi: 10.1371/journal.pone.0019257
[59]
Maruyama Y, Shimada H, Taniguchi J (1995) Ca(2+)-activated K(+)-channels in the nuclear envelope isolated from single pancreatic acinar cells. Pflugers Arch 430: 148–150. doi: 10.1007/bf00373851
[60]
Miller MJ, Rauer H, Tomita H, Rauer H, Gargus JJ, et al. (2001) Nuclear Localization and Dominant-negative Suppression by a Mutant SKCa3 N-terminal Channel Fragment Identified in a Patient with Schizophrenia. J Biol Chem 276: 27753–27756. doi: 10.1074/jbc.c100221200
[61]
Redel A, Lange M, Jazbutyte V, Lotz C, Smul TM, et al. (2008) Activation of Mitochondrial Large-Conductance Calcium-Activated K+ Channels via Protein Kinase A Mediates Desflurane-Induced Preconditioning. Anesth Analg 106: 384–391. doi: 10.1213/ane.0b013e318160650f
[62]
Corrêa SAL, Müller J, Collingridge GL, Marrion NV (2009) Rapid endocytosis provides restricted somatic expression of a K+ channel in central neurons. J Cell Sci 122: 4186–4194. doi: 10.1242/jcs.058420
[63]
Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammala CE, et al. (2007) Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab 6: 229–235. doi: 10.1016/j.cmet.2007.07.010
[64]
Ashcroft FM, Gribble FM (1999) ATP-sensitive K+ channels and insulin secretion: their role in health and disease. Diabetologia 42: 903–919. doi: 10.1007/s001250051247
[65]
Leung YM, Kwan EP, Ng B, Kang Y, Gaisano HY (2007) SNAREing voltage-gated K+ and ATP-sensitive K+ channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr Rev 28: 653–663. doi: 10.1210/er.2007-0010
[66]
Li X, Herrington J, Petrov A, Ge L, Eiermann G, et al. (2013) The Role of Voltage-Gated Potassium Channels Kv2.1 and Kv2.2 in the Regulation of Insulin and Somatostatin Release from Pancreatic Islets. J Pharmacol Exp Ther 344: 407–416. doi: 10.1124/jpet.112.199083
[67]
Shi QJ, Lei ZM, Rao CV, Lin J (1993) Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology 132: 1387–1395. doi: 10.1210/endo.132.3.7679981
[68]
Liang Z, Chen L, McClafferty H, Lukowski R, MacGregor D, et al. (2011) Control of hypothalamic–pituitary–adrenal stress axis activity by the intermediate conductance calcium-activated potassium channel, SK4. J Physiol 589: 5965–5986. doi: 10.1113/jphysiol.2011.219378
[69]
Birdsey TJ, Boyd RD, Sibley CP, Greenwood SL (1999) Effect of hyposmotic challenge on microvillous membrane potential in isolated human placental villi. Am J Physiol 276: R1479–1488.
[70]
Gow IF, Thomson J, Davidson J, Shennan DB (2005) The effect of a hyposmotic shock and purinergic agonists on K+(Rb+) efflux from cultured human breast cancer cells. Biochim Biophys Acta 1712: 52–61. doi: 10.1016/j.bbamem.2005.04.002
[71]
Okada Y, Maeno E, Shimizu T, Dezaki K, Wang J, et al. (2001) Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD). J Physiol 532: 3–16. doi: 10.1111/j.1469-7793.2001.0003g.x
[72]
van de Put FHMM, Greenwood SL, Sibley CP (1996) Effect of hyposmotic cell swelling on [Ca2+]i in human placental cytotrophoblast cells in culture. Placenta 17: A15. doi: 10.1016/s0143-4004(96)90122-8
[73]
Roberts VH, Webster RP, Brockman DE, Pitzer BA, Myatt L (2007) Post-Translational Modifications of the P2X(4) purinergic receptor subtype in the human placenta are altered in preeclampsia. Placenta 28: 270–277. doi: 10.1016/j.placenta.2006.04.008
[74]
Bakker WW, Donker RB, Timmer A, van Pampus MG, van Son WJ, et al. (2007) Plasma Hemopexin Activity in Pregnancy and Preeclampsia. Hypertens Pregnancy 26: 227–239. doi: 10.1080/10641950701274896