全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Casein Kinase II Induced Polymerization of Soluble TDP-43 into Filaments Is Inhibited by Heat Shock Proteins

DOI: 10.1371/journal.pone.0090452

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Trans-activation Response DNA-binding Protein-43 (TDP-43) lesions are observed in Amyotrophic Lateral Sclerosis (ALS), Frontotemporal Lobar Degeneration with ubiquitin inclusions (FTLD-TDP) and 25–50% of Alzheimer's Disease (AD) cases. These abnormal protein inclusions are composed of either amorphous TDP-43 aggregates or highly ordered filaments. The filamentous TDP-43 accumulations typically contain clean 10–12 nm filaments though wider 18–20 nm coated filaments may be observed. The TDP-43 present within these lesions is phosphorylated, truncated and ubiquitinated, and these modifications appear to be abnormal as they are linked to both a cellular heat shock response and microglial activation. The mechanisms associated with this abnormal TDP-43 accumulation are believed to result in a loss of TDP-43 function, perhaps due to the post-translational modifications or resulting from physical sequestration of the TDP-43. The formation of TDP-43 inclusions involves cellular translocation and conversion of TDP-43 into fibrillogenic forms, but the ability of these accumulations to sequester normal TDP-43 and propagate this behavior between neurons pathologically is mostly inferred. The lack of methodology to produce soluble full length TDP-43 and recapitulate this polymerization into filaments as observed in disease has limited our understanding of these pathogenic cascades. Results The protocols described here generate soluble, full-length and untagged TDP-43 allowing for a direct assessment of the impact of various posttranslational modifications on TDP-43 function. We demonstrate that Casein Kinase II (CKII) promotes the polymerization of this soluble TDP-43 into 10 nm diameter filaments that resemble the most common TDP-43 structures observed in disease. Furthermore, these filaments are recognized as abnormal by Heat Shock Proteins (HSPs) which can inhibit TDP-43 polymerization or directly promote TDP-43 filament depolymerization. Conclusion These findings demonstrate CKII induces polymerization of soluble TDP-43 into filaments and Hsp90 promotes TDP-43 filament depolymerization. These findings provide rational for potential therapeutic intervention at these points in TDP-43 proteinopathies.

References

[1]  Ayala YM, Pantano S, D'Ambrogio A, Buratti E, Brindisi A, et al. (2005) Human, Drosophila, and C.elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348: 575–588. doi: 10.1016/j.jmb.2005.02.038
[2]  Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130–133. doi: 10.1126/science.1134108
[3]  Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, et al. (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319: 1668–1672. Epub 2008 Feb 1628.
[4]  Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, et al. (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63: 535–538. doi: 10.1002/ana.21344
[5]  Rutherford NJ, Zhang YJ, Baker M, Gass JM, Finch NA, et al. (2008) Novel mutations in TARDBP (TDP-43) in patients with familial amyotrophic lateral sclerosis. PLoS Genet 4: e1000193. doi: 10.1371/journal.pgen.1000193
[6]  Gendron TF, Rademakers R, Petrucelli L (2012) TARDBP Mutation Analysis in TDP-43 Proteinopathies and Deciphering the Toxicity of Mutant TDP-43. J Alzheimers Dis 29: 29.
[7]  Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, et al. (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. J Biol Chem 280: 37572–37584. Epub 32005 Sep 37512.
[8]  Fuentealba RA, Udan M, Bell S, Wegorzewska I, Shao J, et al. (2010) Interaction with polyglutamine aggregates reveals a Q/N-rich domain in TDP-43. J Biol Chem 285: 26304–26314. Epub 22010 Jun 26316.
[9]  Liu-Yesucevitz L, Bilgutay A, Zhang YJ, Vanderweyde T, Citro A, et al. (2010) Tar DNA binding protein-43 (TDP-43) associates with stress granules: analysis of cultured cells and pathological brain tissue. PLoS One 5: e13250. doi: 10.1371/journal.pone.0013250
[10]  Guo W, Chen Y, Zhou X, Kar A, Ray P, et al. (2011) An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18: 822–830 doi:810.1038/nsmb.2053.
[11]  Udan-Johns M, Bengoechea R, Bell S, Shao J, Diamond MI, et al. (2013) Prion-like nuclear aggregation of TDP-43 during heat shock is regulated by HSP40/70 chaperones. Human molecular genetics.
[12]  Wang IF, Reddy NM, Shen CK (2002) Higher order arrangement of the eukaryotic nuclear bodies. Proc Natl Acad Sci U S A 99: 13583–13588. Epub 12002 Oct 13582.
[13]  Zhang YJ, Xu YF, Dickey CA, Buratti E, Baralle F, et al. (2007) Progranulin mediates caspase-dependent cleavage of TAR DNA binding protein-43. J Neurosci 27: 10530–10534. doi: 10.1523/jneurosci.3421-07.2007
[14]  Kabashi E, Lin L, Tradewell ML, Dion PA, Bercier V, et al. (2010) Gain and loss of function of ALS-related mutations of TARDBP (TDP-43) cause motor deficits in vivo. Hum Mol Genet 19: 671–683. Epub 2009 Dec 2003.
[15]  Wu LS, Cheng WC, Shen CK (2012) Targeted depletion of TDP-43 expression in the spinal cord motor neurons leads to the development of amyotrophic lateral sclerosis-like phenotypes in mice. J Biol Chem 287: 27335–27344 doi:27310.21074/jbc.M27112.359000. Epub 352012 Jun 359020.
[16]  Hasegawa M, Arai T, Nonaka T, Kametani F, Yoshida M, et al. (2008) Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol 64: 60–70. doi: 10.1002/ana.21425
[17]  Tsuji H, Arai T, Kametani F, Nonaka T, Yamashita M, et al. (2012) Molecular analysis and biochemical classification of TDP-43 proteinopathy. Brain 135: 3380–3391 doi:3310.1093/brain/aws3230. Epub 2012 Oct 3383.
[18]  Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, et al. (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351: 602–611. Epub 2006 Oct 2030.
[19]  Geser F, Martinez-Lage M, Kwong LK, Lee VM, Trojanowski JQ (2009) Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. J Neurol 256: 1205–1214. Epub 2009 Mar 1207.
[20]  Higashi S, Iseki E, Yamamoto R, Minegishi M, Hino H, et al. (2007) Concurrence of TDP-43, tau and alpha-synuclein pathology in brains of Alzheimer's disease and dementia with Lewy bodies. Brain research 1184: 284–294. doi: 10.1016/j.brainres.2007.09.048
[21]  Thorpe JR, Tang H, Atherton J, Cairns NJ (2008) Fine structural analysis of the neuronal inclusions of frontotemporal lobar degeneration with TDP-43 proteinopathy. J Neural Transm 115: 1661–1671. Epub 2008 Oct 1631.
[22]  Lin WL, Dickson DW (2008) Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta Neuropathol 116: 205–213. Epub 2008 Jul 2008.
[23]  Brettschneider J, Libon DJ, Toledo JB, Xie SX, McCluskey L, et al. (2012) Microglial activation and TDP-43 pathology correlate with executive dysfunction in amyotrophic lateral sclerosis. Acta Neuropathol 123: 395–407. Epub 2012 Jan 2011.
[24]  Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, et al. (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. The Journal of biological chemistry 284: 20329–20339. doi: 10.1074/jbc.m109.010264
[25]  Furukawa Y, Kaneko K, Watanabe S, Yamanaka K, Nukina N (2011) A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. J Biol Chem 286: 18664–18672.Epub 12011 Mar 18624.
[26]  Pesiridis GS, Tripathy K, Tanik S, Trojanowski JQ, Lee VM (2011) A “two-hit” hypothesis for inclusion formation by carboxyl-terminal fragments of TDP-43 protein linked to RNA depletion and impaired microtubule-dependent transport. The Journal of biological chemistry 286: 18845–18855. doi: 10.1074/jbc.m111.231118
[27]  Nonaka T, Masuda-Suzukake M, Arai T, Hasegawa Y, Akatsu H, et al. (2013) Prion-like properties of pathological TDP-43 aggregates from diseased brains. Cell reports 4: 124–134. doi: 10.1016/j.celrep.2013.06.007
[28]  Choksi DK, Roy B, Chatterjee S, Yusuff T, Bakhoum MF, et al. (2013) TDP-43 Phosphorylation by casein kinase I{varepsilon} promotes oligomerization and enhances toxicity in vivo. Human molecular genetics.
[29]  Nonaka T, Arai T, Buratti E, Baralle FE, Akiyama H, et al. (2009) Phosphorylated and ubiquitinated TDP-43 pathological inclusions in ALS and FTLD-U are recapitulated in SH-SY5Y cells. FEBS Lett 583: 394–400. Epub 2008 Dec 2025.
[30]  Liachko NF, Guthrie CR, Kraemer BC (2010) Phosphorylation promotes neurotoxicity in a Caenorhabditis elegans model of TDP-43 proteinopathy. J Neurosci 30: 16208–16219. doi: 10.1523/jneurosci.2911-10.2010
[31]  Zhang YJ, Gendron TF, Xu YF, Ko LW, Yen SH, et al. (2010) Phosphorylation regulates proteasomal-mediated degradation and solubility of TAR DNA binding protein-43 C-terminal fragments. Mol Neurodegener 5: 33. doi: 10.1186/1750-1326-5-33
[32]  Sarkar M, Kuret J, Lee G (2008) Two motifs within the tau microtubule-binding domain mediate its association with the hsc70 molecular chaperone. J Neurosci Res 86: 2763–2773. doi: 10.1002/jnr.21721
[33]  Jinwal UK, O'Leary JC 3rd, Borysov SI, Jones JR, Li Q, et al. (2010) Hsc70 rapidly engages tau after microtubule destabilization. J Biol Chem 285: 16798–16805. Epub 12010 Mar 16722.
[34]  Dickey CA, Kamal A, Lundgren K, Klosak N, Bailey RM, et al. (2007) The high-affinity HSP90-CHIP complex recognizes and selectively degrades phosphorylated tau client proteins. J Clin Invest 117: 648–658. PMCID: PMC1794119.
[35]  Dickey C, Kraft C, Jinwal U, Koren J, Johnson A, et al. (2009) Aging analysis reveals slowed tau turnover and enhanced stress response in a mouse model of tauopathy. Am J Pathol 174: 228–238.Epub 2008 Dec 2012.
[36]  Jinwal UK, Abisambra JF, Zhang J, Dharia S, O'Leary JC, et al. (2012) Cdc37/Hsp90 protein complex disruption triggers an autophagic clearance cascade for TDP-43 protein. J Biol Chem 287: 24814–24820. Epub 22012 Jun 24816.
[37]  Freibaum BD, Chitta RK, High AA, Taylor JP (2010) Global analysis of TDP-43 interacting proteins reveals strong association with RNA splicing and translation machinery. Journal of proteome research 9: 1104–1120. doi: 10.1021/pr901076y
[38]  Wang JZ, Grundke-Iqbal I, Iqbal K (2007) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25: 59–68. doi: 10.1111/j.1460-9568.2006.05226.x
[39]  Sahara N, Maeda S, Yoshiike Y, Mizoroki T, Yamashita S, et al. (2007) Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain. J Neurosci Res 85: 3098–3108. doi: 10.1002/jnr.21417
[40]  Patterson KR, Ward SM, Combs B, Voss K, Kanaan NM, et al. (2011) Heat shock protein 70 prevents both tau aggregation and the inhibitory effects of preexisting tau aggregates on fast axonal transport. Biochemistry 50: 10300–10310. Epub 12011 Nov 10308.
[41]  Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT Jr (2002) Neurodegenerative disease: amyloid pores from pathogenic mutations. Nature 418: 291. doi: 10.1038/418291a
[42]  Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, et al. (2009) TDP-43 is intrinsically aggregation-prone and ALS-linked mutations accelerate aggregation and increase toxicity. The Journal of biological chemistry 22: 22. doi: 10.1074/jbc.m109.010264
[43]  Combs B, Voss K, Gamblin TC (2011) Pseudohyperphosphorylation has differential effects on polymerization and function of tau isoforms. Biochemistry 50: 9446–9456 doi:9410.1021/bi2010569. Epub 2012011 Oct 2010517.
[44]  Dou F, Netzer WJ, Tanemura K, Li F, Hartl FU, et al. (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci U S A 100: 721–726. Epub 2003 Jan 2009.
[45]  Sahara N, Maeda S, Yoshiike Y, Mizoroki T, Yamashita S, et al. (2007) Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain. J Neurosci Res 85: 3098–3108. doi: 10.1002/jnr.21417
[46]  Miyata Y, Yahara I (1992) The 90-kDa heat shock protein, HSP90, binds and protects casein kinase II from self-aggregation and enhances its kinase activity. The Journal of biological chemistry 267: 7042–7047.
[47]  Masliah E, Iimoto DS, Mallory M, Albright T, Hansen L, et al. (1992) Casein kinase II alteration precedes tau accumulation in tangle formation. The American journal of pathology 140: 263–268.
[48]  Iimoto DS, Masliah E, DeTeresa R, Terry RD, Saitoh T (1990) Aberrant casein kinase II in Alzheimer's disease. Brain research 507: 273–280. doi: 10.1016/0006-8993(90)90282-g
[49]  Herman AM, Khandelwal PJ, Stanczyk BB, Rebeck GW, Moussa CE (2011) beta-amyloid triggers ALS-associated TDP-43 pathology in AD models. Brain research 1386: 191–199. doi: 10.1016/j.brainres.2011.02.052
[50]  Li HY, Yeh PA, Chiu HC, Tang CY, Tu BP (2011) Hyperphosphorylation as a defense mechanism to reduce TDP-43 aggregation. PloS one 6: e23075. doi: 10.1371/journal.pone.0023075
[51]  Brady OA, Meng P, Zheng Y, Mao Y, Hu F (2011) Regulation of TDP-43 aggregation by phosphorylation and p62/SQSTM1. Journal of neurochemistry 116: 248–259. doi: 10.1111/j.1471-4159.2010.07098.x
[52]  Zhao M, Ma J, Zhu HY, Zhang XH, Du ZY, et al. (2011) Apigenin inhibits proliferation and induces apoptosis in human multiple myeloma cells through targeting the trinity of CK2, Cdc37 and Hsp90. Molecular cancer 10: 104. doi: 10.1186/1476-4598-10-104
[53]  Neumann M, Igaz LM, Kwong LK, Nakashima-Yasuda H, Kolb SJ, et al. (2007) Absence of heterogeneous nuclear ribonucleoproteins and survival motor neuron protein in TDP-43 positive inclusions in frontotemporal lobar degeneration. Acta neuropathologica 113: 543–548. doi: 10.1007/s00401-007-0221-x
[54]  Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, et al. (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284: 20329–20339. Epub 22009 May 20322.
[55]  Hernandez MP, Sullivan WP, Toft DO (2002) The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 277: 38294–38304. Epub 32002 Aug 38292.
[56]  Lin WL, Dickson DW (2008) Ultrastructural localization of TDP-43 in filamentous neuronal inclusions in various neurodegenerative diseases. Acta neuropathologica 116: 205–213. doi: 10.1007/s00401-008-0408-9
[57]  Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675. doi: 10.1038/nmeth.2089

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133