全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Egfl7 Is Differentially Expressed in Arteries and Veins during Retinal Vascular Development

DOI: 10.1371/journal.pone.0090455

Full-Text   Cite this paper   Add to My Lib

Abstract:

The vasculature of the central nervous system (CNS) is composed of vascular endothelial and mural cells which interact closely with glial cells and neurons. The development of the CNS vascularisation is a unique process which requires the contribution of specific regulators in addition to the classical angiogenic factors. The egfl7 gene is mainly detected in endothelial cells during physiological and pathological angiogenesis. Egfl7 codes for a secreted protein which predominantly accumulates into the extracellular space where it controls vascular elastin deposition or the Notch pathway. Egfl7 is the host gene of the microRNA miR126 which is also expressed in endothelial cells and which plays major functions during blood vessel development. While the expression of egfl7 and that of miR126 were well described in endothelial cells during development, their pattern of expression during the establishment of the CNS vasculature is still unknown. By analysing the expression of egfl7 and miR126 during mouse retina vascularisation, we observed that while expression of miR126 is detected in all endothelia, egfl7 is initially expressed in all endothelial cells and then is progressively restricted to veins and to their neighbouring capillaries. The recruitment of mural cells around retina arteries coincides with the down-regulation of egfl7 in the arterial endothelial cells, suggesting that this recruitment could be involved in the loss of egfl7 expression in arteries. However, the expression pattern of egfl7 is similar when mural cell recruitment is prevented by the injection of a PDGFRβ blocking antibody, suggesting that vessel maturation is not responsible for egfl7 down-regulation in retinal arteries.

References

[1]  Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57: 173–185 doi:10.1124/pr.57.2.4.
[2]  Ruhrberg C, Bautch VL (2013) Neurovascular development and links to disease. Cell Mol Life Sci CMLS 70: 1675–1684 doi:10.1007/s00018-013-1277-5.
[3]  Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, et al. (2013) The blood-brain barrier: an engineering perspective. Front Neuroengineering 6: 7 doi:10.3389/fneng.2013.00007.
[4]  Eichmann A, Thomas J-L (2013) Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 3: a006551 doi:10.1101/cshperspect.a006551.
[5]  Daneman R, Agalliu D, Zhou L, Kuhnert F, Kuo CJ, et al. (2009) Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. Proc Natl Acad Sci U S A 106: 641–646 doi:10.1073/pnas.0805165106.
[6]  Tam SJ, Richmond DL, Kaminker JS, Modrusan Z, Martin-McNulty B, et al. (2012) Death receptors DR6 and TROY regulate brain vascular development. Dev Cell 22: 403–417 doi:10.1016/j.devcel.2011.11.018.
[7]  Fruttiger M (2007) Development of the retinal vasculature. Angiogenesis 10: 77–88 doi:10.1007/s10456-007-9065-1.
[8]  Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, et al. (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161: 1163–1177 doi:10.1083/jcb.200302047.
[9]  Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H (2004) Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn Off Publ Am Assoc Anat 230: 316–324 doi:10.1002/dvdy.20063.
[10]  Parker LH, Schmidt M, Jin S-W, Gray AM, Beis D, et al. (2004) The endothelial-cell-derived secreted factor Egfl7 regulates vascular tube formation. Nature 428: 754–758 doi:10.1038/nature02416.
[11]  Soncin F, Mattot V, Lionneton F, Spruyt N, Lepretre F, et al. (2003) VE-statin, an endothelial repressor of smooth muscle cell migration. EMBO J 22: 5700–5711 doi:10.1093/emboj/cdg549.
[12]  Lelièvre E, Hinek A, Lupu F, Buquet C, Soncin F, et al. (2008) VE-statin/egfl7 regulates vascular elastogenesis by interacting with lysyl oxidases. EMBO J 27: 1658–1670 doi:10.1038/emboj.2008.103.
[13]  Schmidt M, Paes K, De Mazière A, Smyczek T, Yang S, et al. (2007) EGFL7 regulates the collective migration of endothelial cells by restricting their spatial distribution. Dev Camb Engl 134: 2913–2923 doi:10.1242/dev.002576.
[14]  Fish JE, Santoro MM, Morton SU, Yu S, Yeh R-F, et al. (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15: 272–284 doi:10.1016/j.devcel.2008.07.008.
[15]  Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, et al. (2008) Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Dev Camb Engl 135: 3989–3993 doi:10.1242/dev.029736.
[16]  Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, et al. (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15: 261–271 doi:10.1016/j.devcel.2008.07.002.
[17]  Nichol D, Shawber C, Fitch MJ, Bambino K, Sharma A, et al. (2010) Impaired angiogenesis and altered Notch signaling in mice overexpressing endothelial Egfl7. Blood 116: 6133–6143 doi:10.1182/blood-2010-03-274860.
[18]  Uemura A, Ogawa M, Hirashima M, Fujiwara T, Koyama S, et al. (2002) Recombinant angiopoietin-1 restores higher-order architecture of growing blood vessels in mice in the absence of mural cells. J Clin Invest 110: 1619–1628 doi:10.1172/JCI15621.
[19]  Bell ML, Buvoli M, Leinwand LA (2010) Uncoupling of expression of an intronic microRNA and its myosin host gene by exon skipping. Mol Cell Biol 30: 1937–1945 doi:10.1128/MCB.01370-09.
[20]  Fantin A, Vieira JM, Plein A, Maden CH, Ruhrberg C (2013) The embryonic mouse hindbrain as a qualitative and quantitative model for studying the molecular and cellular mechanisms of angiogenesis. Nat Protoc 8: 418–429. doi: 10.1038/nprot.2013.015
[21]  Kuhnert F, Mancuso MR, Shamloo A, Wang H-T, Choksi V, et al. (2010) Essential regulation of CNS angiogenesis by the orphan G protein-coupled receptor GPR124. Science 330: 985–989 doi:10.1126/science.1196554.
[22]  Schmidt MHH, Bicker F, Nikolic I, Meister J, Babuke T, et al. (2009) Epidermal growth factor-like domain 7 (EGFL7) modulates Notch signalling and affects neural stem cell renewal. Nat Cell Biol 11: 873–880 doi:10.1038/ncb1896.
[23]  Lobov IB, Renard RA, Papadopoulos N, Gale NW, Thurston G, et al. (2007) Delta-like ligand 4 (Dll4) is induced by VEGF as a negative regulator of angiogenic sprouting. Proc Natl Acad Sci U S A 104: 3219–3224 doi:10.1073/pnas.0611206104.
[24]  Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, et al. (2007) The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci U S A 104: 3225–3230 doi:10.1073/pnas.0611177104.
[25]  Hellstr?m M, Phng L-K, Hofmann JJ, Wallgard E, Coultas L, et al. (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445: 776–780 doi:10.1038/nature05571.
[26]  Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, et al. (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Dev Camb Engl 128: 3675–3683.
[27]  Xu D, Perez RE, Ekekezie II, Navarro A, Truog WE (2008) Epidermal growth factor-like domain 7 protects endothelial cells from hyperoxia-induced cell death. Am J Physiol Lung Cell Mol Physiol 294: L17–23 doi:10.1152/ajplung.00178.2007.
[28]  Badiwala MV, Tumiati LC, Joseph JM, Sheshgiri R, Ross HJ, et al. (2010) Epidermal growth factor-like domain 7 suppresses intercellular adhesion molecule 1 expression in response to hypoxia/reoxygenation injury in human coronary artery endothelial cells. Circulation 122: S156–161 doi:10.1161/CIRCULATIONAHA.109.927715.
[29]  Claxton S, Fruttiger M (2005) Oxygen modifies artery differentiation and network morphogenesis in the retinal vasculature. Dev Dyn Off Publ Am Assoc Anat 233: 822–828 doi:10.1002/dvdy.20407.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133