Quercetin has a wide range of biological properties. The gut microflora can often modulate its biological activity and their potential health effects. There still is a lack of information about gut bacteria involving in this process. The strains of gut microbes from human feces that can transform quercetin were isolated and identified by in vitro fermentation. The results showed that Escherichia coli, Stretococcus lutetiensis, Lactobacillus acidophilus, Weissella confusa, Enterococcus gilvus, Clostridium perfringens and Bacteroides fragilis have the various ability of degrading quercetin. Among them, C. perfringens and B. fragilis were discovered to have the strongest ability of degrading quercetin. Additionally, quercetin can't inhibit the growth of C. perfringens. In conclusion, many species of gut microbiota can degrade quercetin, but their ability are different.
References
[1]
Yoshino S, Hara A, Sakakibara H, Kawabata K, Tokumura A, et al. (2011) Effect of quercetin and glucuronide metabolites on the monoamine oxidase-A reaction in mouse brain mitochondria. Nutrition 27: 847–852. doi: 10.1016/j.nut.2010.09.002
[2]
Azuma K, Ippoushi K, Terao J (2010) Evaluation of tolerable levels of dietary quercetin for exerting its antioxidative effect in high cholesterol-fed rats. Food Chem Toxicol 48: 1117–1122. doi: 10.1016/j.fct.2010.02.005
[3]
Chang Y, Lin H, Chan S, Yeh S (2012) Effects of quercetin metabolites on the enhancing effect of b-carotene on DNA damage and cytochrome P1A1/2 expression in benzo [a] pyrene-exposed A549 cells. Food Chem 133: 445–450. doi: 10.1016/j.foodchem.2012.01.060
[4]
Lotito SB, Zhang W, Yang CS, Crozier A, Frei B (2011) Metabolic conversion of dietary flavonoids alters their anti-inflammatory and antioxidant properties. Free Radical Biol Med 51: 454–463. doi: 10.1016/j.freeradbiomed.2011.04.032
[5]
Ishizawa K, Yoshizumi M, Kawai Y, Terao J, Kihira Y, et al. (2011) Pharmacology in health food: metabolism of quercetin in vivo and its protective effect against arteriosclerosis. J Pharmacol Sci 115: 466–470. doi: 10.1254/jphs.10r38fm
[6]
Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: Food sources and bioavailability. Am J Clin Nutr 79: 727–747.
[7]
Manach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81: 2305–2425.
[8]
Rasmussen SE, Frederiksen H, Krogholm KS, Poulsen L (2005) Dietary proanthocyanidins: Occurrence, dietary intake, bioavailability, and protection against cardiovascular disease. Mol Nutr Food Res 49: 159–174. doi: 10.1002/mnfr.200400082
[9]
Walle T (2004) Absorption and metabolism of flavonoids. Free Radical Biol Med 36: 829–837. doi: 10.1016/j.freeradbiomed.2004.01.002
[10]
Zoetendal EG, Akkermans ADL, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64: 3854–3859.
[11]
Jacobs DM, Gaudier E, van Duynhoven J, Vaughan EE (2009) Non-digestible food ingredients, colonic microbiota and the impact on gut health and immunity: A role for metabolomics. Curr Drug Metab 10: 41–54. doi: 10.2174/138920009787048383
[12]
Serra A, Macia A, Romero M, Reguant J, Ortega N, et al. (2012) Metabolic pathways of the colonic metabolism of flavonoids (flavonols, flavones and flavanones) and phenolic acids. Food Chem 130: 383–393. doi: 10.1016/j.foodchem.2011.07.055
[13]
Setchell KDR, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol – A clue to the effectiveness of soy and its isoflavones. J Nutr 132: 3577–3584.
[14]
Xu X, Harris KS, Wang H, Murphy PA, Hendrich S (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 125: 2307–2315.
[15]
Rastmanesh R (2011) High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chem Biol Interact 189: 1–8. doi: 10.1016/j.cbi.2010.10.002
[16]
Gibson LF, Khoury JT (1986) Storage and survival of bacteria by ultra-freeze. Lett Appl Microbiol 3: 127–129. doi: 10.1111/j.1472-765x.1986.tb01565.x
[17]
Maniatis T, Fritch EF, Sambrook J (1982) Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Laboratory Press
[18]
Hoefel D, Monis PT, Grooby WL, andrews S, Saint CP (2005) Profiling bacterial survival through a water treatment process and subsequent distribution system. J Appl Microbiol 99: 175–186. doi: 10.1111/j.1365-2672.2005.02573.x
[19]
Krumholz LR, Bryant MP (1986) Eubacterium oxidoreducens sp. nov. requiring H2 or formate to degrade gallate, pyrogallol, phloroglucinol and quercetin. Arch Microbiol 144: 8–14. doi: 10.1007/bf00454948
[20]
Winter J, Moore LH, Dowell VR, Bokkenheuser VD (1989) C-ring cleavage of flavonoids by human intestinal bacteria. Appl Environ Microbiol 55: 1203–1208.
[21]
Winter J, Popoff MR, Grimont P, Bokkenheuser VD (1991) Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. Int J Syst Bacteriol 41: 355–357. doi: 10.1099/00207713-41-3-355
[22]
Schneider H, Schwiertz A, Collins MD, Blaut M (1999) Anaerobic transformation of quercetin-3-glucoside by bacteria from the human intestinal tract. Arch Microbiol 171: 81–91. doi: 10.1007/s002030050682
[23]
Braune A, Gütschow M, Engst W, Blaut M (2001) Degradation of quercetin and luteolin by Eubacterium ramulus. Appl Environ Microbiol 67: 5558–5567. doi: 10.1128/aem.67.12.5558-5567.2001
[24]
Lu L, Qian D, Yang J, Jiang S, Guo J, et al. (2012) Identification of isoquercitrin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS. Biomed Chromatogr 27: 509–514. doi: 10.1002/bmc.2820
[25]
Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20: 593–621. doi: 10.1128/cmr.00008-07
[26]
Tannock GW (2010) The bowel microbiota and inflammatory bowel diseases. Int J Inflam 2010: 1–9. doi: 10.4061/2010/954051
[27]
Tannock GW, Lawley B, Munro K, Lay C, Taylor C, et al. (2012) Comprehensive analysis of the bacterial content of stool from patients with chronic pouchitis, normal pouches, or familial adenomatous polyposis pouches. Inflamm Bowel Dis 18: 925–934. doi: 10.1002/ibd.21936