全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Dual Mode Action of Mangiferin in Mouse Liver under High Fat Diet

DOI: 10.1371/journal.pone.0090137

Full-Text   Cite this paper   Add to My Lib

Abstract:

Chronic over-nutrition is a major contributor to the spread of obesity and its related metabolic disorders. Development of therapeutics has been slow compared to the speedy increase in occurrence of these metabolic disorders. We have identified a natural compound, mangiferin (MGF) (a predominant component of the plants of Anemarrhena asphodeloides and Mangifera indica), that can protect against high fat diet (HFD) induced obesity, hyperglycemia, insulin resistance and hyperlipidemia in mice. However, the molecular mechanisms whereby MGF exerts these beneficial effects are unknown. To understand MGF mechanisms of action, we performed unbiased quantitative proteomic analysis of protein profiles in liver of mice fed with HFD utilizing 15N metabolically labeled liver proteins as internal standards. We found that out of 865 quantified proteins 87 of them were significantly differentially regulated by MGF. Among those 87 proteins, 50% of them are involved in two major processes, energy metabolism and biosynthesis of metabolites. Further classification indicated that MGF increased proteins important for mitochondrial biogenesis and oxidative activity including oxoglutarate dehydrogenase E1 (Dhtkd1) and cytochrome c oxidase subunit 6B1 (Cox6b1). Conversely, MGF reduced proteins critical for lipogenesis such as fatty acid stearoyl-CoA desaturase 1 (Scd1) and acetyl-CoA carboxylase 1 (Acac1). These mass spectrometry data were confirmed and validated by western blot assays. Together, data indicate that MGF upregulates proteins pivotal for mitochondrial bioenergetics and downregulates proteins controlling de novo lipogenesis. This novel mode of dual pharmacodynamic actions enables MGF to enhance energy expenditure and inhibit lipogenesis, and thereby correct HFD induced liver steatosis and prevent adiposity. This provides a molecular basis supporting development of MGF or its metabolites into therapeutics to treat metabolic disorders.

References

[1]  Smyth S, Heron A (2006) Diabetes and obesity: the twin epidemics. Nat Med 12: 75–80. doi: 10.1038/nm0106-75
[2]  Vernon G, Baranova A, Younossi ZM (2011) Systematic review: the epidemiology and natural history of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 34: 274–285. doi: 10.1111/j.1365-2036.2011.04724.x
[3]  Muruganandan S, Srinivasan K, Gupta S, Gupta PK, Lal J (2005) Effect of mangiferin on hyperglycemia and atherogenicity in streptozotocin diabetic rats. J Ethnopharmacol 97: 497–501. doi: 10.1016/j.jep.2004.12.010
[4]  Miura T, Ichiki H, Hashimoto I, Iwamoto N, Kato M, et al. (2001) Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 8: 85–87. doi: 10.1078/0944-7113-00009
[5]  Sellamuthu PS, Muniappan BP, Perumal SM, Kandasamy M (2009) Antihyperglycemic Effect of Mangiferin in Streptozotocin Induced Diabetic Rats. J Hea Sci 55: 206–214. doi: 10.1248/jhs.55.206
[6]  Vyas A, Syeda K, Ahmad A, Padhye S, Sarkar FH (2012) Perspectives on Medicinal Properties of Mangiferin. Med Chem 12: 412–425. doi: 10.2174/138955712800493870
[7]  Sanchez GM, Re L, Giuliani A, Nunez-Selles AJ, Davison GP, et al. (2000) Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol Res 42: 565–573. doi: 10.1006/phrs.2000.0727
[8]  el Sissi HI, Saleh NA (1965) Phenolic components of Mangifera indica. II. Planta Med 13: 346–352. doi: 10.1055/s-0028-1100128
[9]  Guo F, Huang C, Liao X, Wang Y, He Y, et al. (2011) Beneficial effects of mangiferin on hyperlipidemia in high-fat-fed hamsters. Mol Nutr Food Res 55: 1809–1818. doi: 10.1002/mnfr.201100392
[10]  Niu YC, Li ST, Na LX, Feng RN, Liu LY, et al. (2012) Mangiferin Decreases Plasma Free Fatty Acids through Promoting Its Catabolism in Liver by Activation of AMPK. Plos One 7.
[11]  Gazzana G, Borlak J (2009) An update on the mouse liver proteome. Proteome Sci 7: 35. doi: 10.1186/1477-5956-7-35
[12]  Schmid GM, Converset V, Walter N, Sennitt MV, Leung KY, et al. (2004) Effect of high-fat diet on the expression of proteins in muscle, adipose tissues, and liver of C57BL/6 mice. Proteomics 4: 2270–2282. doi: 10.1002/pmic.200300810
[13]  Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 76: 4951–4959. doi: 10.1021/ac049208j
[14]  Thomas PD, Kejariwal A, Campbell MJ, Mi HY, Diemer K, et al. (2003) PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucl Aci Res 31: 334–341. doi: 10.1093/nar/gkg115
[15]  Neufeld DS (1997) Isolation of rat liver hepatocytes. Methods Mol Biol 75: 145–151. doi: 10.1385/0-89603-441-0:145
[16]  Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, et al. (1996) Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 132: 1133–1149. doi: 10.1083/jcb.132.6.1133
[17]  West DB, Boozer CN, Moody DL, Atkinson RL (1992) Dietary obesity in nine inbred mouse strains. Am J Physiol 262: R1025–1032.
[18]  Goldberg IJ, Ginsberg HN (2006) Ins and outs modulating hepatic triglyceride and development of nonalcoholic fatty liver disease. Gastroenterol 130: 1343–1346. doi: 10.1053/j.gastro.2006.02.040
[19]  Ramirez-Zacarias JL, Castro-Munozledo F, Kuri-Harcuch W (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochem 97: 493–497. doi: 10.1007/bf00316069
[20]  Mari M, Caballero F, Colell A, Morales A, Caballeria J, et al. (2006) Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4: 185–198. doi: 10.1016/j.cmet.2006.07.006
[21]  Puigserver P (2005) Tissue-specific regulation of metabolic pathways through the transcriptional coactivator PGC1-alpha. Int J Obes (Lond) 29 Suppl 1S5–9. doi: 10.1038/sj.ijo.0802905
[22]  Vega RB, Huss JM, Kelly DP (2000) The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20: 1868–1876. doi: 10.1128/mcb.20.5.1868-1876.2000
[23]  Huss JM, Kopp RP, Kelly DP (2002) Peroxisome proliferator-activated receptor coactivator-1alpha (PGC-1alpha) coactivates the cardiac-enriched nuclear receptors estrogen-related receptor-alpha and -gamma. Identification of novel leucine-rich interaction motif within PGC-1alpha. J Biol Chem 277: 40265–40274. doi: 10.1074/jbc.m206324200
[24]  Wu Y, Delerive P, Chin WW, Burris TP (2002) Requirement of helix 1 and the AF-2 domain of the thyroid hormone receptor for coactivation by PGC-1. J Biol Chem 277: 8898–8905. doi: 10.1074/jbc.m110761200
[25]  Scarpulla RC (2008) Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci 1147: 321–334. doi: 10.1196/annals.1427.006
[26]  Monsalve FA, Pyarasani RD, Delgado-Lopez F, Moore-Carrasco R (2013) Peroxisome proliferator-activated receptor targets for the treatment of metabolic diseases. Mediators Inflamm 2013: 549627. doi: 10.1155/2013/549627
[27]  Wu CC, MacCoss MJ, Howell KE, Matthews DE, Yates JR 3rd (2004) Metabolic labeling of mammalian organisms with stable isotopes for quantitative proteomic analysis. Anal Chem 76: 4951–4959. doi: 10.1021/ac049208j
[28]  McLain AL, Szweda PA, Szweda LI (2011) alpha-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 45: 29–36. doi: 10.3109/10715762.2010.534163
[29]  Bunik VI, Fernie AR (2009) Metabolic control exerted by the 2-oxoglutarate dehydrogenase reaction: a cross-kingdom comparison of the crossroad between energy production and nitrogen assimilation. Biochem J 422: 405–421. doi: 10.1042/bj20090722
[30]  Hodges M (2002) Enzyme redundancy and the importance of 2-oxoglutarate in plant ammonium assimilation. J Experi Botany 53: 905–916. doi: 10.1093/jexbot/53.370.905
[31]  Daniel J, Danchin A (1986) 2-Ketoglutarate as a Possible Regulatory Metabolite Involved in Cyclic Amp-Dependent Catabolite Repression in Escherichia-Coli-K12. Biochimie 68: 303–310. doi: 10.1016/s0300-9084(86)80027-x
[32]  Surendran S, Michals-Matalon K, Krywawych S, Qazi QH, Tuchman R, et al. (2002) DOOR syndrome: deficiency of E1 component of the 2-oxoglutarate dehydrogenase complex. Am J Med Genet 113: 371–374. doi: 10.1002/ajmg.b.10804
[33]  Guffon N, Lopez-Mediavilla C, Dumoulin R, Mousson B, Godinot C, et al. (1993) 2-Ketoglutarate dehydrogenase deficiency, a rare cause of primary hyperlactataemia: report of a new case. J Inherit Metab Dis 16: 821–830. doi: 10.1007/bf00714273
[34]  Odievre MH, Chretien D, Munnich A, Robinson BH, Dumoulin R, et al. (2005) A novel mutation in the dihydrolipoamide dehydrogenase E3 subunit gene (DLD) resulting in an atypical form of alpha-ketoglutarate dehydrogenase deficiency. Hum Mutat 25: 323–324. doi: 10.1002/humu.9319
[35]  Amsterdam A, Nissen RM, Sun ZX, Swindell EC, Farrington S, et al. (2004) Identification of 315 genes essential for early zebrafish development. Pro Natl Acad Sci U S A 101: 12792–12797. doi: 10.1073/pnas.0403929101
[36]  Johnson MT, Yang HS, Magnuson T, Patel MS (1997) Targeted disruption of the murine dihydrolipoamide dehydrogenase gene (Dld) results in perigastrulation lethality. Pro Natl Acad Sci U S A 94: 14512–14517. doi: 10.1073/pnas.94.26.14512
[37]  Massa V, Fernandez-Vizarra E, Alshahwan S, Bakhsh E, Goffrini P, et al. (2008) Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Gen 82: 1281–1289. doi: 10.1016/j.ajhg.2008.05.002
[38]  Barrientos A, Barros MH, Valnot I, Rotig A, Rustin P, et al. (2002) Cytochrome oxidase in health and disease. Gene 286: 53–63. doi: 10.1016/s0378-1119(01)00803-4
[39]  Pecina P, Houstkova H, Hansikova H, Zeman J, Houstek J (2004) Genetic defects of cytochrome c oxidase assembly. Physiol Res 53 Suppl 1S213–223.
[40]  Wu M, Tzagoloff A (1987) Mitochondrial and cytoplasmic fumarases in Saccharomyces cerevisiae are encoded by a single nuclear gene FUM1. J Biol Chem 262: 12275–12282.
[41]  Tomlinson IP, Alam NA, Rowan AJ, Barclay E, Jaeger EE, et al. (2002) Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30: 406–410. doi: 10.1038/ng849
[42]  Toro JR, Nickerson ML, Wei MH, Warren MB, Glenn GM, et al. (2003) Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73: 95–106. doi: 10.1086/376435
[43]  King A, Selak MA, Gottlieb E (2006) Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene 25: 4675–4682. doi: 10.1038/sj.onc.1209594
[44]  Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5: 857–866. doi: 10.1038/nrc1737
[45]  Ratcliffe PJ (2007) Fumarate hydratase deficiency and cancer: activation of hypoxia signaling? Cancer Cell 11: 303–305. doi: 10.1016/j.ccr.2007.03.015
[46]  Andreu GP, Delgado R, Velho JA, Curti C, Vercesi AE (2005) Iron complexing activity of mangiferin, a naturally occurring glucosylxanthone, inhibits mitochondrial lipid peroxidation induced by Fe2+-citrate. Eur J Pharmacol 513: 47–55. doi: 10.1016/j.ejphar.2005.03.007
[47]  Leiro JM, Alvarez E, Arranz JA, Siso IG, Orallo F (2003) In vitro effects of mangiferin on superoxide concentrations and expression of the inducible nitric oxide synthase, tumour necrosis factor-alpha and transforming growth factor-beta genes. Biochem Pharmacol 65: 1361–1371. doi: 10.1016/s0006-2952(03)00041-8
[48]  Wakil SJ, Stoops JK, Joshi VC (1983) Fatty acid synthesis and its regulation. Annu Rev Biochem 52: 537–579. doi: 10.1146/annurev.bi.52.070183.002541
[49]  Mao J, DeMayo FJ, Li H, Abu-Elheiga L, Gu Z, et al. (2006) Liver-specific deletion of acetyl-CoA carboxylase 1 reduces hepatic triglyceride accumulation without affecting glucose homeostasis. Pro Natl Acad Sci U S A 103: 8552–8557. doi: 10.1073/pnas.0603115103
[50]  Cohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, et al. (2002) Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 297: 240–243. doi: 10.1126/science.1071527
[51]  Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, et al. (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A 99: 11482–11486. doi: 10.1073/pnas.132384699
[52]  Miyazaki M, Dobrzyn A, Man WC, Chu KK, Sampath H, et al. (2004) Stearoyl-CoA desaturase 1 gene expression is necessary for fructose-mediated induction of lipogenic gene expression by sterol regulatory element-binding protein-1c-dependent and -independent mechanisms. J Biol Chem 279: 25164–25171. doi: 10.1074/jbc.m402781200
[53]  Miyazaki M, Dobrzyn A, Sampath H, Lee SH, Man WC, et al. (2004) Reduced adiposity and liver steatosis by stearoyl-CoA desaturase deficiency are independent of peroxisome proliferator-activated receptor-alpha. J Biol Chem 279: 35017–35024. doi: 10.1074/jbc.m405327200
[54]  Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, et al. (2007) Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 6: 484–496. doi: 10.1016/j.cmet.2007.10.014
[55]  Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86: 839–848. doi: 10.1016/j.biochi.2004.09.018
[56]  Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109: 1125–1131. doi: 10.1172/jci0215593
[57]  Foufelle F, Ferre P (2002) New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. Biochem J 366: 377–391. doi: 10.1042/bj20020430
[58]  Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, et al. (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100: 12027–12032. doi: 10.1073/pnas.1534923100
[59]  McLendon AN, Spivey J, Woodis CB (2013) African Mango (Irvingia gabonensis) Extract for Weight Loss: A Systematic Review. J Nutr Ther 2: 53–58. doi: 10.6000/1929-5634.2013.02.01.7
[60]  Xu W, Zhu H, Gu M, Luo Q, Ding J, et al. (2013) DHTKD1 is essential for mitochondrial biogenesis and function maintenance. FEBS Lett 587: 3587–3592. doi: 10.1016/j.febslet.2013.08.047
[61]  Dunkelmann RJ, Ebinger F, Schulze A, Wanders RJA, et al. (2000) 2-Ketoglutarate dehydrogenase deficiency with intermittent 2-ketoglutaric aciduria. Neuropediatrics 31: 35–38. doi: 10.1055/s-2000-15295
[62]  Bonnefont JP, Chretien D, Rustin P, Robinson B, Vassault A, et al. (1992) α-Ketoglutarate dehydrogenase deficiency presenting as congenital lactic acidosis. J. Pediatr 121: 255–258. doi: 10.1016/s0022-3476(05)81199-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133