全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Cognitive Ecology in Hummingbirds: The Role of Sexual Dimorphism and Its Anatomical Correlates on Memory

DOI: 10.1371/journal.pone.0090165

Full-Text   Cite this paper   Add to My Lib

Abstract:

In scatter-hoarding species, several behavioral and neuroanatomical adaptations allow them to store and retrieve thousands of food items per year. Nectarivorous animals face a similar scenario having to remember quality, location and replenishment schedules of several nectar sources. In the green-backed firecrown hummingbird (Sephanoides sephanoides), males are territorial and have the ability to accurately keep track of nectar characteristics of their defended food sources. In contrast, females display an opportunistic strategy, performing rapid intrusions into males territories. In response, males behave aggressively during the non-reproductive season. In addition, females have higher energetic demands due to higher thermoregulatory costs and travel times. The natural scenario of this species led us to compared cognitive abilities and hippocampal size between males and females. Males were able to remember nectar location and renewal rates significantly better than females. However, the hippocampal formation was significantly larger in females than males. We discuss these findings in terms of sexually dimorphic use of spatial resources and variable patterns of brain dimorphisms in birds.

References

[1]  Boogert NJ, Fawcett TW, Lefebvre L (2011) Mate choice for cognitive traits: a review of the evidence in nonhuman vertebrates. Behav Ecol 22: 447–459. doi: 10.1093/beheco/arq173
[2]  Brown GE, Ferrari MCO, Malka PH, Fregeau L, Kayello L, et al. (2013) Retention of acquired predator recognition among shy versus bold juvenile rainbow trout. Beh Ecol Sociobiol 67: 43–51. doi: 10.1007/s00265-012-1422-4
[3]  González-Gómez PL, Vásquez RA, Bozinovic F (2011a) Flexibility of foraging behavior in hummingbirds: The role of energy constraints and cognitive abilities. Auk 128: 36–42. doi: 10.1525/auk.2011.10024
[4]  Balda RP, Pepperberg IM, Kamil AC (1998) Animal Cognition in Nature. London: Academic Press.
[5]  Haftorn S (1954) Contribution to the food biology of tits especially about storing of surplus food. Part I. The crested tit (Parus c. cristatus L.). K. Norske Vidensk. Selsk. Skr. 4: 1–122.
[6]  Pravosudov VV (1985) Search for and storage of food by Parus cinctus lapponicus and P. montanus borealis (Paridae). Zool Zh 64: 1036–1043.
[7]  Vander Wall SB (1990) Food hoarding in animals. Chicago, IL: University of Chicago Press.
[8]  Sherry DF, Krebs JR, Cowie RJ (1981) Memory for the location of stored food in marsh tits. Anim Behav 29: 1260–1266. doi: 10.1016/s0003-3472(81)80078-4
[9]  Sherry DF, Avery M, Stevens A (1982) The spacing of stored food by marsh tits. Z. Tierpsychol 58: 153–162. doi: 10.1111/j.1439-0310.1982.tb00313.x
[10]  Shettleworth SJ, Krebs JR (1982) How marsh tits find their hoards: the roles of site preference and spatial memory. J Exp Psychol Anim Behav Process 8: 354–375. doi: 10.1037/0097-7403.8.4.354
[11]  Shettleworth SJ (1995) Comparative studies of memory in food storing birds: from the field to the Skinner box. In Alleva E, Fasolo A, Lipp HP, Nadel L, Ricceri L (1995) Behavioral brain research in naturalistic and semi-naturalistic settings. The Netherlands: Kluwer Academic. pp. 159–192.
[12]  Pravosudov VV, Smulders TV (2010) Integrating ecology, psychology and neurobiology within a foodhoarding paradigm. Phil Trans R Soc B 365: 859–867. doi: 10.1098/rstb.2009.0216
[13]  O'Keefe J, Nadel L (1978) The Hippocampus as a Cognitive Map. Oxford University Press.
[14]  Smulders TV, Gould KL, Leaver LA (2010) Using ecology to guide the study of cognitive and neural mechanisms of different aspects of spatial memory in animals. Phil Trans R Soc B 365: 883–900. doi: 10.1098/rstb.2009.0211
[15]  Sherry DF, Vaccarino AL (1989) Hippocampus and memory for food caches in black-capped chickadees. Behav Neurosci 103: 308–318. doi: 10.1037//0735-7044.103.2.308
[16]  Krushinskaya NL (1966) Some complex forms of feeding behaviour of nut-cracker Nucifraga caryocatactes, after removal of old cortex. Zh Evol Biokhim Fisiol 11: 563–568.
[17]  Krebs JR, Sherry DF, Healy SD, Perry VH, Vaccarino AL (1989) Hippocampal specialization of food-storing birds. Proc Natl Acad Sci USA 86: 1388–1392. doi: 10.1073/pnas.86.4.1388
[18]  Sherry DF, Vaccarino AL, Buckenham K, Herz RS (1989) The hippocampal complex of food-storing birds. Brain Behav Evol 34: 308–317. doi: 10.1159/000116516
[19]  Sherry DF, Jacobs LF, Gaulin SJC (1992) Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci 15: 298–303. doi: 10.1016/0166-2236(92)90080-r
[20]  Pravosudov VV, Clayton NS (2002) A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in blackcapped chickadees (Poecile atricapilla). Behav Neurosci 116: 515–522. doi: 10.1037//0735-7044.116.4.515
[21]  Roth TCII, Pravosudov VV (2009) Hippocampal volumes and neuron numbers increase along a gradient of environmental harshness: a large-scale comparison. Proc R Soc B 276: 401–405. doi: 10.1098/rspb.2008.1184
[22]  Sherry DF, Forbes MRL, Khurgel M, Ivy GO (1993) Females have a larger hippocampus than males in the brood-parasitic brown-headed cowbird. Proc Natl Acad Sci USA 90: 7893–7843. doi: 10.1073/pnas.90.16.7839
[23]  Burger DK, Saucier JM, Iwaniuk AN, Saucier DM (2013) Seasonal and sex differences in the hippocampus of a wild rodent. Beh Brain Res 236: 131–138. doi: 10.1016/j.bbr.2012.08.044
[24]  Costa SS, Andrade R, Carneiro LA, Gon?alves EJ, Kotrschal K, et al. (2011) Sex Differences in the Dorsolateral Telencephalon Correlate with Home Range Size in Blenniid Fish. Brain Behav Evol 77: 55–64. doi: 10.1159/000323668
[25]  Day LB, Fusani L, Kim C, Schlinger BA (2011) Sexually dimorphic neural phenotypes in golden-collared manakins (Manacus vitellinus). Brain Behav Evol 77: 206–218. doi: 10.1159/000327046
[26]  Irwin R (2000) Hummingbird avoidance of nectar-robbed plants: spatial location or visual cues. Oikos 91: 499–506. doi: 10.1034/j.1600-0706.2000.910311.x
[27]  Baker HG, Baker I, Hodges SA (1998) Sugar composition of nectar and fruits consumed by birds and bats in the tropics and subtropics. Biotropica 30: 559–586. doi: 10.1111/j.1744-7429.1998.tb00097.x
[28]  Chalcoff VR, Aizen MA, Galetto L (2006) Nectar concentration and composition of 26 species from the temperate forest of South America. Ann Bot 97: 413–421.
[29]  Healy SD, Hurly TA (2004) Spatial learning and memory in birds. Brain, Behav Evol 63: 211–220. doi: 10.1159/000076782
[30]  González-Gómez PL, Bozinovic F, Vásquez RA (2011b) Elements of episodic-like memory in free-living hummingbirds, energetic consequences. An Behav 81: 1257–1262. doi: 10.1016/j.anbehav.2011.03.014
[31]  Ward BJ, Day LB, Wilkening SR, Wylie DR, Saucier DM, et al. (2012) Hummingbirds have a greatly enlarged hippocampal formation. Biol Lett 8: 657–659. doi: 10.1098/rsbl.2011.1180
[32]  Temeles EJ, Goldman RS, Kudla AU (2005) Foraging and territory economics of sexually dimorphic purple-throated caribs (Eulampis jugularis) on three Heliconia morphs. Auk 122: 187–204. doi: 10.1642/0004-8038(2005)122[0187:fateos]2.0.co;2
[33]  González-Gómez PL, Estades CF (2009) Is natural selection promoting sexual dimorphism in the Green-backed Firecrown hummingbird (Sephanoides sephaniodes)? J Ornithol 150: 351–356. doi: 10.1007/s10336-008-0356-0
[34]  González-Gomez PL, Ricote-Martínez N, Razeto-Barry P, Bozinovic F (2011c) Thermoregulatory cost affects territorial behavior in hummingbirds: A model and its application. Behav Ecol Sociobiol 65: 2141–2148. doi: 10.1007/s00265-011-1222-2
[35]  Sokal RR, Rohlf FJ (1995) Biometry. NY: WH Freeman and Co.
[36]  Smulders TV, Kristy LG, Leaver LA (2010) Using ecology to guide the study of cognitive and neural mechanisms of different aspects of spatial memory in food-hoarding animals. Phil Trans R Soc B 365: 883–900. doi: 10.1098/rstb.2009.0211
[37]  Henderson J, Hurly TA, Healy SD, Bateson M (2006) Timing in free-living rufous hummingbirds, Selasphorus rufus. Curr Biol 16: 512–515. doi: 10.1016/j.cub.2006.01.054
[38]  Clayton N, Reboreda JC, Kacelnik A (1997) Seasonal changes in hippocampus volume in parasitic cowbirds. Behav Proc 41: 237–243. doi: 10.1016/s0376-6357(97)00050-8
[39]  Astié AA, Kacelnik A, Reboreda JC (1998) Sexual differences in memory in shiny cowbirds. Anim Cogn 1: 77–82. doi: 10.1007/s100710050011
[40]  Healy SD, Ibacon E, Haggis O, Harris AP, Kelley LA (2009) Explanations for variation in cognitive ability: Behavioural ecology meets comparative cognition. Behav Process 80: 288–294. doi: 10.1016/j.beproc.2008.10.002
[41]  Galea LAM, Kavaliers M, Ossenkopp KP (1996) Sexually dimorphic spatial learning in meadow voles, Microtus pennsylvanicus, and deer mice, Peromyscus maniculatus. J Exp Biol 199: 195–200.
[42]  Gaulin SJC, Fitzgerald RW (1986) Sex differences in spatial ability: an evolutionary hypothesis and a test. Am Nat 127: 74–88. doi: 10.1086/284468
[43]  Jones CM, Braithwaite VA, Healy SD (2003) The evolution of sex differences in spatial ability. Behav Neurosci 117: 403–411. doi: 10.1037/0735-7044.117.3.403
[44]  Dunlap AS, Chen BB, Bednekoff PA, Greene TM, Balda RP (2006) A state-dependent sex difference in spatial memory in pinyon jays, Gymnorhinus cyanocephalus: mated females forget as predicted by natural history. An Beh 72: 401–411. doi: 10.1016/j.anbehav.2006.01.015
[45]  McKechnie AE, Freckleton RP, Jetz W (2006) Phenotypic plasticity in the scaling of avian basal metabolic rate. Proc R Soc B 273: 931–937. doi: 10.1098/rspb.2005.3415
[46]  Healy SD, Gwinner E, Krebs JR (1996) Hippocampal volume in migratory and non- migratory warblers: Effect of age and experience. Behav Brain Res 81: 61–68. doi: 10.1016/s0166-4328(96)00044-7
[47]  Pravosudov V, Roth TCII (2013) Cognitive Ecology of Food Hoarding: The Evolution of Spatial Memory and the Hippocampus. Ann Rev Ecol Evol Syst 44: 173–193. doi: 10.1146/annurev-ecolsys-110512-135904
[48]  Reboreda JC, Clayton NS, Kacelnik A (1996) Species and sex differences in hippocampus size in parasitic and non-parasitic cowbirds. Neuroreport 7: 505–508. doi: 10.1097/00001756-199601310-00031
[49]  Clayton NS, Reboreda JC (1997) Seasonal changes of hippocampus volume in parasitic cowbirds. Beh Proc 41: 237–243. doi: 10.1016/s0376-6357(97)00050-8
[50]  Roth TCII, Brodin A, Smulders TV, LaDage LD, Pravosudov VV (2010) Is bigger always better? A critical appraisal of the use of volumetric analysis in the study of hippocampus. Philos T R Soc B 365: 915–931. doi: 10.1098/rstb.2009.0208
[51]  Smulders TV, Shiflett MV, Sperling AJ, DeVoogd TJ (2000) Seasonal Changes in Neuron Numbers in the Hippocampal Formation of a Food-Hoarding Bird: The Black-Capped Chickadee. J Neurobiol 44: 414–422. doi: 10.1002/1097-4695(20000915)44:4<414::aid-neu4>3.0.co;2-i

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133