The phosphoinositol-3 kinase (PI3K) pathway is highly dysregulated in squamous cell carcinoma of the head and neck (SCCHN). While inhibitors of the PI3K/AKT pathway are being developed in cancer, their efficacy does not appear to be related to the presence of mutations or amplification in pathway genes. The PI3K pathway is a major regulator of macro-autophagy, an evolutionarily conserved catabolic process that degrades cellular materials to promote cellular homeostasis and survival under stress. Employing a panel of SCCHN cell lines, we observed a significant correlation between the activity of PI3K/AKT inhibitors and their ability to induce autophagy. More specifically, resistance to these inhibitors was associated with accumulation of p62/SQSTM1, a pleotropic protein that is consumed during autophagy, while loss of autophagy was, for the first time, found to be due to silencing of an essential autophagy gene, ATG7. Moreover, modulating ATG7 and p62/SQSTM1 could regulate sensitivity to PI3K/AKT inhibitors, underscoring a mechanistic link between autophagy and drug sensitivity. Analysis of human tissues revealed progressive accumulation of p62/SQSTM1 in a significant proportion of cancer samples compared to normal tissue, suggesting that defective autophagy has relevance to SCCHN. These findings are further validated by analysis of TCGA data confirming homozygous deletion and mRNA down-regulation of ATG7 in 10.0% of SCCHN samples. Taken together, these data indicate that p62/SQSTM1 levels modulate sensitivity to PI3K/AKT inhibitors; cancers vary in their capacity to undergo autophagy through epigenetic modification and, when deficient, accumulate p62/SQSTM1; and expression of autophagy-related proteins may serve as markers for resistance to PI3K/AKT inhibitors in SCCHN.
References
[1]
Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, et al. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30: 193–204. doi: 10.1016/j.ctrv.2003.07.007
[2]
Janku F, Tsimberidou AM, Garrido-Laguna I, Wang X, Luthra R, et al. (2011) PIK3CA mutations in patients with advanced cancers treated with PI3K/AKT/mTOR axis inhibitors. Mol Cancer Ther 10: 558–565. doi: 10.1158/1535-7163.mct-10-0994
[3]
Cohen Y, Goldenberg-Cohen N, Shalmon B, Shani T, Oren S, et al. (2011) Mutational analysis of PTEN/PIK3CA/AKT pathway in oral squamous cell carcinoma. Oral Oncol 47: 946–950. doi: 10.1016/j.oraloncology.2011.07.013
[4]
Liu P, Cheng H, Roberts TM, Zhao JJ (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8: 627–644. doi: 10.1038/nrd2926
[5]
Degtyarev M, De Maziere A, Orr C, Lin J, Lee BB, et al. (2008) Akt inhibition promotes autophagy and sensitizes PTEN-null tumors to lysosomotropic agents. J Cell Biol 183: 101–116. doi: 10.1083/jcb.200801099
[6]
Janku F, McConkey DJ, Hong DS, Kurzrock R (2011) Autophagy as a target for anticancer therapy. Nature reviews Clinical oncology 8. doi: 10.1038/nrclinonc.2011.71
[7]
Ghadimi MP, Lopez G, Torres KE, Belousov R, Young ED, et al. (2012) Targeting the PI3K/mTOR axis, alone and in combination with autophagy blockade, for the treatment of malignant peripheral nerve sheath tumors. Mol Cancer Ther 11: 1758–1769. doi: 10.1158/1535-7163.mct-12-0015
[8]
Hunter KD, Parkinson EK, Harrison PR (2005) Profiling early head and neck cancer. Nat Rev Cancer 5: 127–135. doi: 10.1038/nrc1549
[9]
Saman D (2012) A review of the epidemiology of oral and pharyngeal carcinoma: update. Head & Neck Oncology 4: 1. doi: 10.1186/1758-3284-4-1
[10]
Simard EP, Ward EM, Siegel R, Jemal A (2012) Cancers with increasing incidence trends in the United States: 1999 through 2008. CA: A Cancer Journal for Clinicians 62: 118–128. doi: 10.3322/caac.20141
[11]
Lui VW, Hedberg ML, Li H, Vangara BS, Pendleton K, et al. (2013) Frequent Mutation of the PI3K Pathway in Head and Neck Cancer Defines Predictive Biomarkers. Cancer Discov 3: 761–769. doi: 10.1158/2159-8290.cd-13-0103
[12]
Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, et al. (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333: 1154–1157. doi: 10.1126/science.1206923
[13]
Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, et al. (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333: 1157–1160. doi: 10.1126/science.1208130
[14]
Keck Michaela K, Zuo Zhixiang, Khattri Arun, Brown Christopher D, Stricker Thomas, et al. (2013) Genomic profiling of kinase genes in head and neck squamous cell carcinomas to identify potentially targetable genetic aberrations in FGFR1/2, DDR2, EPHA2, and PIK3CA. J Clin Oncol 31.
[15]
Hayes JRGaAKE-N David N (2013) The Cancer Genome Atlas: Integrated analysis of genome alterations in squamous cell carcinoma of the head and neck. J Clin Oncol 31.
[16]
Shanware NP, Bray K, Abraham RT (2013) The PI3K, metabolic, and autophagy networks: interactive partners in cellular health and disease. Annu Rev Pharmacol Toxicol 53: 89–106. doi: 10.1146/annurev-pharmtox-010611-134717
[17]
Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nature reviews Molecular cell biology 8: 931–937. doi: 10.1038/nrm2245
[18]
Parzych KR, Klionsky DJ (2013) An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxid Redox Signal doi: 10.1089/ars.2013.5371
[19]
Sridhar S, Botbol Y, Macian F, Cuervo AM (2011) Autophagy and Disease: always two sides to a problem. The Journal of pathology 255–273. doi: 10.1002/path.3025
[20]
Rubinsztein DC, Codogno P, Levine B (2012) Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 11: 709–730. doi: 10.1038/nrd3802
[21]
Cowan JM, Beckett MA, Ahmed-Swan S, Weichselbaum RR (1992) Cytogenetic evidence of the multistep origin of head and neck squamous cell carcinomas. J Natl Cancer Inst 84: 793–797. doi: 10.1093/jnci/84.10.793
[22]
Easty DM, Easty GC, Carter RL, Monaghan P, Butler LJ (1981) Ten human carcinoma cell lines derived from squamous carcinomas of the head and neck. Br J Cancer 43: 772–785.
[23]
Kuo W-L, Liu J, Mauceri H, Vokes EE, Weichselbaum R, et al. (2010) Efficacy of the multi-kinase inhibitor enzastaurin is dependent on cellular signaling context. Molecular cancer therapeutics 9: 2814–2824. doi: 10.1158/1535-7163.mct-10-0352
[24]
Lee IH, Cao L, Mostoslavsky R, Lombard DB, Liu J, et al. (2008) A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc Natl Acad Sci U S A 105: 3374–3379. doi: 10.1073/pnas.0712145105
[25]
Young NR, Liu J, Pierce C, Wei TF, Grushko T, et al. (2013) Molecular phenotype predicts sensitivity of squamous cell carcinoma of the head and neck to epidermal growth factor receptor inhibition. Mol Oncol 7: 359–368. doi: 10.1016/j.molonc.2012.11.001
[26]
Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988–1004. doi: 10.1038/nrd1902
[27]
Sangai T, Akcakanat A, Chen H, Tarco E, Wu Y, et al. (2012) Biomarkers of Response to Akt Inhibitor MK-2206 in Breast Cancer. Clin Cancer Res 18: 5816–5828. doi: 10.1158/1078-0432.ccr-12-1141
[28]
Lee HS, Daniels BH, Salas E, Bollen AW, Debnath J, et al. (2012) Clinical utility of LC3 and p62 immunohistochemistry in diagnosis of drug-induced autophagic vacuolar myopathies: a case-control study. PLoS One 7: e36221. doi: 10.1371/journal.pone.0036221
[29]
Puissant A, Fenouille N, Auberger P (2012) When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res 2: 397–413.
[30]
Jaakkola PM, Pursiheimo JP (2009) p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy 5: 410–412. doi: 10.4161/auto.5.3.7823
[31]
Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-arencibia M, et al. (2010) Regulation of Mammalian Autophagy in Physiology and Pathophysiology. Physiological Reviews 1383–1435. doi: 10.1152/physrev.00030.2009
[32]
Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, et al. (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8: 445–544.
[33]
Bj?rk?y G, Lamark T, Brech A, Outzen H, Perander M, et al. (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. The Journal of cell biology 171: 603–614. doi: 10.1083/jcb.200507002
[34]
Fujita K, Maeda D, Xiao Q, Srinivasula SM (2011) Nrf2-mediated induction of p62 controls Toll-like receptor-4-driven aggresome-like induced structure formation and autophagic degradation. Proc Natl Acad Sci U S A 108: 1427–1432. doi: 10.1073/pnas.1014156108
[35]
Kwon J, Han E, Bui CB, Shin W, Lee J, et al. (2012) Assurance of mitochondrial integrity and mammalian longevity by the p62-Keap1-Nrf2-Nqo1 cascade. EMBO Rep 13: 150–156. doi: 10.1038/embor.2011.246
[36]
Lau A, Wang XJ, Zhao F, Villeneuve NF, Wu T, et al. (2010) A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62. Mol Cell Biol 30: 3275–3285. doi: 10.1128/mcb.00248-10
[37]
Pankiv S, Lamark T, Bruun JA, ?vervatn A, Bj?rk?y G, et al. (2010) Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem 285: 5941–5953. doi: 10.1074/jbc.m109.039925
[38]
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, et al. (2012) The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov 2: 401–404. doi: 10.1158/2159-8290.cd-12-0095
[39]
Degenhardt K, Mathew R, Beaudoin B, Bray K, Anderson D, et al. (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10: 51–64. doi: 10.1016/j.ccr.2006.06.001
[40]
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, et al. (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25: 795–800. doi: 10.1101/gad.2016211
[41]
Yu L, Alva A, Su H, Dutt P, Freundt E, et al. (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304: 1500–1502. doi: 10.1126/science.1096645
[42]
Lee IH, Kawai Y, Fergusson MM, Rovira II, Bishop AJ, et al. (2012) Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 336: 225–228. doi: 10.1126/science.1218395
[43]
Mathew R, Karp CM, Beaudoin B, Vuong N, Chen G, et al. (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137: 1062–1075. doi: 10.1016/j.cell.2009.03.048
[44]
White E (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 12: 401–410. doi: 10.1038/nrc3262
[45]
Bialik S, Kimchi A (2008) Autophagy and tumor suppression: recent advances in understanding the link between autophagic cell death pathways and tumor development. Adv Exp Med Biol 615: 177–200. doi: 10.1007/978-1-4020-6554-5_9
[46]
Kon M, Kiffin R, Koga H, Chapochnick J, Macian F, et al. (2011) Chaperone-Mediated Autophagy Is Required for Tumor Growth. Science translational medicine 3: 109ra117. doi: 10.1126/scitranslmed.3003182
[47]
Kaushik S, Massey AC, Mizushima N, Cuervo AM (2008) Constitutive Activation of Chaperone-mediated Autophagy in Cells with Impaired Macroautophagy. Molecular Biology of the Cell 19: 2179–2192. doi: 10.1091/mbc.e07-11-1155
[48]
Ma XH, Piao S, Wang D, McAfee QW, Nathanson KL, et al. (2011) Measurements of tumor cell autophagy predict invasiveness, resistance to chemotherapy, and survival in melanoma. Clin Cancer Res 17: 3478–3489. doi: 10.1158/1078-0432.ccr-10-2372