In this study we have reported the in vivo proteomic changes during Japanese Encephalitis Virus (JEV) infection in combination with in vitro studies which will help in the comprehensive characterization of the modifications in the host metabolism in response to JEV infection. We performed a 2-DE based quantitative proteomic study of JEV-infected mouse brain as well as mouse neuroblastoma (Neuro2a) cells to analyze the host response to this lethal virus. 56 host proteins were found to be differentially expressed post JEV infection (defined as exhibiting ≥1.5-fold change in protein abundance upon JEV infection). Bioinformatics analyses were used to generate JEV-regulated host response networks which reported that the identified proteins were found to be associated with various cellular processes ranging from intracellular protein transport, cellular metabolism and ER stress associated unfolded protein response. JEV was found to invade the host protein folding machinery to sustain its survival and replication inside the host thereby generating a vigorous unfolded protein response, subsequently triggering a number of pathways responsible for the JEV associated pathologies. The results were also validated using a human cell line to correlate them to the human response to JEV. The present investigation is the first report on JEV-host interactome in in vivo model and will be of potential interest for future antiviral research in this field.
References
[1]
Tan SL, Ganji G, Paeper B, Proll S, Katze MG (2007) Systems biology and the host response to viral infection. Nat Biotechnol 25: 1383–1389. doi: 10.1038/nbt1207-1383
[2]
Munday DC, Surtees R, Emmott E, Dove BK, Digard P, et al. (2012) Using SILAC and quantitative proteomics to investigate the interactions between viral and host proteomes. Proteomics 12: 666–672. doi: 10.1002/pmic.201100488
[3]
Zhang LK, Chai F, Li HY, Xiao G, Guo L (2013) Identification of host proteins involved in Japanese encephalitis virus infection by quantitative proteomics analysis. J Proteome Res 12: 2666–2678. doi: 10.1021/pr400011k
[4]
Coombs KM, Berard A, Xu W, Krokhin O, Meng X, et al. (2010) Quantitative proteomic analyses of influenza virus-infected cultured human lung cells. J Virol 84: 10888–10906. doi: 10.1128/jvi.00431-10
[5]
Navratil V, de Chassey B, Combe CR, Lotteau V (2011) When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases. BMC Syst Biol 5: 13. doi: 10.1186/1752-0509-5-13
[6]
Zhou S, Liu R, Zhao X, Huang C, Wei Y (2011) Viral proteomics: the emerging cutting-edge of virus research. Sci China Life Sci 54: 502–512. doi: 10.1007/s11427-011-4177-7
[7]
Mishra MK, Ghosh D, Duseja R, Basu A (2009) Antioxidant potential of Minocycline in Japanese Encephalitis Virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochemistry international 54: 464–470. doi: 10.1016/j.neuint.2009.01.022
[8]
Kumar R, Mathur A, Kumar A, Sharma S, Chakraborty S, et al. (1990) Clinical features & prognostic indicators of Japanese encephalitis in children in Lucknow (India). Indian J Med Res 91: 321–327.
[9]
Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antiviral Res 85: 328–345. doi: 10.1016/j.antiviral.2009.10.008
[10]
Pastorino B, Boucomont-Chapeaublanc E, Peyrefitte CN, Belghazi M, Fusai T, et al. (2009) Identification of cellular proteome modifications in response to West Nile virus infection. Mol Cell Proteomics 8: 1623–1637. doi: 10.1074/mcp.m800565-mcp200
[11]
Pattanakitsakul SN, Rungrojcharoenkit K, Kanlaya R, Sinchaikul S, Noisakran S, et al. (2007) Proteomic analysis of host responses in HepG2 cells during dengue virus infection. J Proteome Res 6: 4592–4600. doi: 10.1021/pr070366b
[12]
Das S, Ghosh D, Basu A (2009) Japanese encephalitis virus induce immuno-competency in neural stem/progenitor cells. PLoS One 4: e8134. doi: 10.1371/journal.pone.0008134
[13]
Sengupta N, Alam SI, Kumar B, Kumar RB, Gautam V, et al. (2010) Comparative proteomic analysis of extracellular proteins of Clostridium perfringens type A and type C strains. Infect Immun 78: 3957–3968. doi: 10.1128/iai.00374-10
[14]
Sengupta N, Alam SI, Kumar B, Kumar RB, Gautam V, et al. Comparative proteomic analysis of extracellular proteins of Clostridium perfringens type A and type C strains. Infection and immunity 78: 3957–3968. doi: 10.1128/iai.00374-10
[15]
Blackshear PJ (1984) Systems for polyacrylamide gel electrophoresis. Methods Enzymol 104: 237–255. doi: 10.1016/s0076-6879(84)04093-3
[16]
Kumar B, Alam SI, Kumar O (2012) Host response to intravenous injection of epsilon toxin in mouse model: a proteomic view. Proteomics 13: 89–107. doi: 10.1002/pmic.201200227
[17]
De Mees C, Laes JF, Bakker J, Smitz J, Hennuy B, et al. (2006) Alpha-fetoprotein controls female fertility and prenatal development of the gonadotropin-releasing hormone pathway through an antiestrogenic action. Mol Cell Biol 26: 2012–2018. doi: 10.1128/mcb.26.5.2012-2018.2006
[18]
Vasaikar SV, Padhi AK, Jayaram B, Gomes J (2013) NeuroDNet - an open source platform for constructing and analyzing neurodegenerative disease networks. BMC Neurosci 14: 3. doi: 10.1186/1471-2202-14-3
[19]
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504. doi: 10.1101/gr.1239303
[20]
Harris MA, Clark J, Ireland A, Lomax J, Ashburner M, et al. (2004) The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 32: D258–261. doi: 10.1093/nar/gkh036
[21]
Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30. doi: 10.1093/nar/28.1.27
[22]
Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, et al. (2011) Reactome: a database of reactions, pathways and biological processes. Nucleic Acids Res 39: D691–697. doi: 10.1093/nar/gkq1018
[23]
Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448–3449. doi: 10.1093/bioinformatics/bti551
[24]
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102: 15545–15550. doi: 10.1073/pnas.0506580102
[25]
Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I (2001) Controlling the false discovery rate in behavior genetics research. Behavioural brain research 125: 279–284. doi: 10.1016/s0166-4328(01)00297-2
[26]
Kalia M, Khasa R, Sharma M, Nain M, Vrati S (2012) Japanese encephalitis virus infects neuronal cells through a clathrin-independent endocytic mechanism. J Virol 87: 148–162. doi: 10.1128/jvi.01399-12
[27]
Jin R, Zhu W, Cao S, Chen R, Jin H, et al. (2013) Japanese encephalitis virus activates autophagy as a viral immune evasion strategy. PLoS One 8: e52909. doi: 10.1371/journal.pone.0052909
[28]
Uchil PD, Kumar AV, Satchidanandam V (2006) Nuclear localization of flavivirus RNA synthesis in infected cells. J Virol 80: 5451–5464. doi: 10.1128/jvi.01982-05
[29]
Tsuda Y, Mori Y, Abe T, Yamashita T, Okamoto T, et al. (2006) Nucleolar protein B23 interacts with Japanese encephalitis virus core protein and participates in viral replication. Microbiol Immunol 50: 225–234. doi: 10.1111/j.1348-0421.2006.tb03789.x
[30]
Samad MA, Okuwaki M, Haruki H, Nagata K (2007) Physical and functional interaction between a nucleolar protein nucleophosmin/B23 and adenovirus basic core proteins. FEBS Lett 581: 3283–3288. doi: 10.1016/j.febslet.2007.06.024
[31]
Russo A, Catillo M, Esposito D, Briata P, Pietropaolo C, et al. (2011) Autoregulatory circuit of human rpL3 expression requires hnRNP H1, NPM and KHSRP. Nucleic acids research 39: 7576–7585. doi: 10.1093/nar/gkr461
[32]
Lee JW, Liao PC, Young KC, Chang CL, Chen SS, et al. (2011) Identification of hnRNPH1, NF45, and C14orf166 as novel host interacting partners of the mature hepatitis C virus core protein. J Proteome Res 10: 4522–4534. doi: 10.1021/pr200338d
[33]
Katoh H, Mori Y, Kambara H, Abe T, Fukuhara T, et al. (2011) Heterogeneous nuclear ribonucleoprotein A2 participates in the replication of Japanese encephalitis virus through an interaction with viral proteins and RNA. J Virol 85: 10976–10988. doi: 10.1128/jvi.00846-11
[34]
Taylor MP, Koyuncu OO, Enquist LW (2011) Subversion of the actin cytoskeleton during viral infection. Nat Rev Microbiol 9: 427–439. doi: 10.1038/nrmicro2574
[35]
Wang T, Gong N, Liu J, Kadiu I, Kraft-Terry SD, et al. (2008) Proteomic modeling for HIV-1 infected microglia-astrocyte crosstalk. PLoS One 3: e2507. doi: 10.1371/journal.pone.0002507
[36]
Liang JJ, Yu CY, Liao CL, Lin YL (2011) Vimentin binding is critical for infection by the virulent strain of Japanese encephalitis virus. Cell Microbiol 13: 1358–1370. doi: 10.1111/j.1462-5822.2011.01624.x
[37]
Das S, Ravi V, Desai A (2011) Japanese encephalitis virus interacts with vimentin to facilitate its entry into porcine kidney cell line. Virus Res 160: 404–408. doi: 10.1016/j.virusres.2011.06.001
[38]
Chiou CT, Hu CC, Chen PH, Liao CL, Lin YL, et al. (2003) Association of Japanese encephalitis virus NS3 protein with microtubules and tumour susceptibility gene 101 (TSG101) protein. J Gen Virol 84: 2795–2805. doi: 10.1099/vir.0.19201-0
[39]
Diniz JA, Dos Santos ZA, Braga MA, Dias AL, da Silva DE, et al. (2008) Early and late pathogenic events of newborn mice encephalitis experimentally induced by itacaiunas and curionopolis bracorhabdoviruses infection. PLoS One 3: e1733. doi: 10.1371/journal.pone.0001733
[40]
Ghoshal A, Das S, Ghosh S, Mishra MK, Sharma V, et al. (2007) Proinflammatory mediators released by activated microglia induces neuronal death in Japanese encephalitis. Glia 55: 483–496. doi: 10.1002/glia.20474
[41]
Tulsawani R, Kelly LS, Fatma N, Chhunchha B, Kubo E, et al. (2010) Neuroprotective effect of peroxiredoxin 6 against hypoxia-induced retinal ganglion cell damage. BMC Neurosci 11: 125. doi: 10.1186/1471-2202-11-125
[42]
Tavender TJ, Springate JJ, Bulleid NJ (2010) Recycling of peroxiredoxin IV provides a novel pathway for disulphide formation in the endoplasmic reticulum. Embo J 29: 4185–4197. doi: 10.1038/emboj.2010.273
[43]
Yang SH, Liu ML, Tien CF, Chou SJ, Chang RY (2009) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) interaction with 3′ ends of Japanese encephalitis virus RNA and colocalization with the viral NS5 protein. J Biomed Sci 16: 40. doi: 10.1186/1423-0127-16-40
[44]
Jaag HM, Lu Q, Schmitt ME, Nagy PD (2011) Role of RNase MRP in viral RNA degradation and RNA recombination. J Virol 85: 243–253. doi: 10.1128/jvi.01749-10
[45]
Koh WL, Ng ML (2005) Molecular mechanisms of West Nile virus pathogenesis in brain cell. Emerg Infect Dis 11: 629–632. doi: 10.3201/eid1104.041076
[46]
Glaser V, Leipnitz G, Straliotto MR, Oliveira J, dos Santos VV, et al. (2010) Oxidative stress-mediated inhibition of brain creatine kinase activity by methylmercury. Neurotoxicology 31: 454–460. doi: 10.1016/j.neuro.2010.05.012
[47]
He B (2006) Viruses, endoplasmic reticulum stress, and interferon responses. Cell Death Differ 13: 393–403. doi: 10.1038/sj.cdd.4401833
[48]
Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annual review of biochemistry 74: 739–789. doi: 10.1146/annurev.biochem.73.011303.074134
[49]
Su HL, Liao CL, Lin YL (2002) Japanese encephalitis virus infection initiates endoplasmic reticulum stress and an unfolded protein response. J Virol 76: 4162–4171. doi: 10.1128/jvi.76.9.4162-4171.2002
[50]
Mkrtchian S, Fang C, Hellman U, Ingelman-Sundberg M (1998) A stress-inducible rat liver endoplasmic reticulum protein, ERp29. Eur J Biochem 251: 304–313. doi: 10.1046/j.1432-1327.1998.2510304.x
[51]
Turano C, Gaucci E, Grillo C, Chichiarelli S (2011) ERp57/GRP58: a protein with multiple functions. Cell Mol Biol Lett 16: 539–563. doi: 10.2478/s11658-011-0022-z
[52]
Khadka S, Vangeloff AD, Zhang C, Siddavatam P, Heaton NS, et al. (2011) A physical interaction network of dengue virus and human proteins. Mol Cell Proteomics 10: M111 012187. doi: 10.1074/mcp.m111.012187
[53]
Kurihara LJ, Kikuchi T, Wada K, Tilghman SM (2001) Loss of Uch-L1 and Uch-L3 leads to neurodegeneration, posterior paralysis and dysphagia. Hum Mol Genet 10: 1963–1970. doi: 10.1093/hmg/10.18.1963
[54]
Hauler F, Mallery DL, McEwan WA, Bidgood SR, James LC (2012) AAA ATPase p97/VCP is essential for TRIM21-mediated virus neutralization. Proc Natl Acad Sci U S A 109: 19733–19738. doi: 10.1073/pnas.1210659109
[55]
Tsukumo Y, Tomida A, Kitahara O, Nakamura Y, Asada S, et al. (2007) Nucleobindin 1 controls the unfolded protein response by inhibiting ATF6 activation. J Biol Chem 282: 29264–29272. doi: 10.1074/jbc.m705038200
[56]
Freudenburg W, Gautam M, Chakraborty P, James J, Richards J, et al. (2013) Reduction in ATP levels triggers immunoproteasome activation by the 11S (PA28) regulator during early antiviral response mediated by IFNbeta in mouse pancreatic beta-cells. PloS one 8: e52408. doi: 10.1371/journal.pone.0052408
[57]
Byun K, Bayarsaikhan E, Kim D, Son M, Hong J, et al. (2012) Activated microglial cells synthesize and secrete AGE-albumin. Anat Cell Biol 45: 47–52. doi: 10.5115/acb.2012.45.1.47
[58]
Kaushik DK, Gupta M, Kumawat KL, Basu A (2012) NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS One 7: e32270. doi: 10.1371/journal.pone.0032270