全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Effects of Blood Contamination and the Rostro-Caudal Gradient on the Human Cerebrospinal Fluid Proteome

DOI: 10.1371/journal.pone.0090429

Full-Text   Cite this paper   Add to My Lib

Abstract:

Over the last years there has been an increased focus on the importance of knowing the effect of pre-analytical influence on the proteomes under study, particularly in the field of biomarker discovery. We present three proteomics studies examining the effect of blood contamination and the rostro-caudal gradient (RCG) on the cerebrospinal fluid (CSF) proteome, in addition to plasma/CSF protein ratios. The studies showed that the central nervous system (CNS) derived proteins appeared to be unaffected by the RCG, while the plasma-derived proteins showed an increase in concentration towards the lumbar area. This implies that the concentration of the plasma-derived proteins in CSF will vary depending on the volume of CSF that is collected. In the CSF samples spiked with blood, 262 of 814 quantified proteins showed an abundance increase of more than 1.5 fold, while 403 proteins had a fold change of less than 1.2 and appeared to be unaffected by blood contamination. Proteins with a high plasma/CSF ratio appeared to give the largest effect on the CSF proteome upon blood contamination. The results give important background information on how factors like blood contamination, RCG and blood-CNS-barrier influences the CSF proteome. This information is particularly important in the field of biomarker discovery, but also for routine clinical measurements. The data from the blood contamination and RCG discovery studies have been deposited to the ProteomeXchange with identifier PXD000401.

References

[1]  Simonsen AH, Bahl JM, Danborg PB, Lindstrom V, Larsen SO, et al. (2013) Pre-analytical factors influencing the stability of cerebrospinal fluid proteins. J Neurosci Methods 215: 234–240. doi: 10.1016/j.jneumeth.2013.03.011
[2]  Berven FS, Kroksveen AC, Berle M, Rajalahti T, Flikka K, et al. (2007) Pre-analytical influence on the low molecular weight cerebrospinal fluid proteome. Proteomics Clinical Applications 1: 699–711. doi: 10.1002/prca.200700126
[3]  Jimenez CR, Koel-Simmelink M, Pham TV, van der Voort L, Teunissen CE (2007) Endogeneous peptide profiling of cerebrospinal fluid by MALDI-TOF mass spectrometry: Optimization of magnetic bead-based peptide capture and analysis of preanalytical variables. Proteomics Clin Appl 1: 1385–1392. doi: 10.1002/prca.200700330
[4]  Teunissen CE, Petzold A, Bennett JL, Berven FS, Brundin L, et al. (2009) A consensus protocol for the standardization of cerebrospinal fluid collection and biobanking. Neurology 73: 1914–1922. doi: 10.1212/wnl.0b013e3181c47cc2
[5]  Petzold A, Sharpe LT, Keir G (2006) Spectrophotometry for cerebrospinal fluid pigment analysis. Neurocrit Care 4: 153–162. doi: 10.1385/ncc:4:2:153
[6]  You JS, Gelfanova V, Knierman MD, Witzmann FA, Wang M, et al. (2005) The impact of blood contamination on the proteome of cerebrospinal fluid. Proteomics 5: 290–296. doi: 10.1002/pmic.200400889
[7]  Berven FS, Kroksveen AC, Berle M, Rajalahti T, Flikka K, et al. (2007) Pre-analytical influence on the low molecular weight cerebrospinal fluid proteome. Proteomics Clin Appl 1: 699–711. doi: 10.1002/prca.200700126
[8]  Cserr HF, Cooper DN, Suri PK, Patlak CS (1981) Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am J Physiol 240: F319–328.
[9]  Reiber H (2001) Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta 310: 173–186. doi: 10.1016/s0009-8981(01)00573-3
[10]  Reiber H, Thiele P (1983) Species-dependent variables in blood cerebrospinal fluid barrier for proteins. J Clin Chem Clin Biochem 21: 199–202. doi: 10.1515/cclm.1983.21.4.199
[11]  Reiber H (2003) Proteins in cerebrospinal fluid and blood: barriers, CSF flow rate and source-related dynamics. Restor Neurol Neurosci 21: 79–96.
[12]  Brandner S, Thaler C, Lewczuk P, Lelental N, Buchfelder M, et al. (2013) Neuroprotein Dynamics in the Cerebrospinal Fluid: Intraindividual Concomitant Ventricular and Lumbar Measurements. Eur Neurol 70: 189–194. doi: 10.1159/000352032
[13]  May C, Kaye JA, Atack JR, Schapiro MB, Friedland RP, et al. (1990) Cerebrospinal fluid production is reduced in healthy aging. Neurology 40: 500–503. doi: 10.1212/wnl.40.3_part_1.500
[14]  Weisner B, Bernhardt W (1978) Protein fractions of lumbar, cisternal, and ventricular cerebrospinal fluid. Separate areas of reference. J Neurol Sci 37: 205–214. doi: 10.1016/0022-510x(78)90204-6
[15]  Tarnaris A, Toma AK, Chapman MD, Petzold A, Keir G, et al. (2011) Rostrocaudal dynamics of CSF biomarkers. Neurochem Res 36: 528–532. doi: 10.1007/s11064-010-0374-1
[16]  Atack JR, May C, Kaye JA, Rapoport SI (1990) Cerebrospinal fluid gradients of acetylcholinesterase and butyrylcholinesterase activity in healthy aging. Neurochem Int 16: 533–538. doi: 10.1016/0197-0186(90)90013-j
[17]  Bjerke M, Portelius E, Minthon L, Wallin A, Anckarsater H, et al.. (2010) Confounding factors influencing amyloid Beta concentration in cerebrospinal fluid. Int J Alzheimers Dis 2010.
[18]  Reiber H (1994) Flow rate of cerebrospinal fluid (CSF)–a concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J Neurol Sci 122: 189–203. doi: 10.1016/0022-510x(94)90298-4
[19]  Simonsen AH, Bech S, Laursen I, Salvesen L, Winge K, et al. (2010) Proteomic investigations of the ventriculo-lumbar gradient in human CSF. J Neurosci Methods 191: 244–248. doi: 10.1016/j.jneumeth.2010.06.017
[20]  Shevchenko A, Wilm M, Vorm O, Mann M (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68: 850–858. doi: 10.1021/ac950914h
[21]  Vaudel M, Barsnes H, Berven FS, Sickmann A, Martens L (2011) SearchGUI: An open-source graphical user interface for simultaneous OMSSA and X!Tandem searches. Proteomics 11: 996–999. doi: 10.1002/pmic.201000595
[22]  Fenyo D, Beavis RC (2003) A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal Chem 75: 768–774. doi: 10.1021/ac0258709
[23]  Geer L, Markey S, Kowalak J, Wagner L, Xu M, et al. (2004) Open mass spectrometry search algorithm. Journal of proteome research 3: 958–964. doi: 10.1021/pr0499491
[24]  Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4: 207–214. doi: 10.1038/nmeth1019
[25]  Kroksveen AC, Aasebo E, Vethe H, Van Pesch V, Franciotta D, et al. (2013) Discovery and initial verification of differentially abundant proteins between multiple sclerosis patients and controls using iTRAQ and SID-SRM. J Proteomics 78: 312–325. doi: 10.1016/j.jprot.2012.09.037
[26]  Abbatiello SE, Mani DR, Keshishian H, Carr SA (2010) Automated detection of inaccurate and imprecise transitions in peptide quantification by multiple reaction monitoring mass spectrometry. Clin Chem 56: 291–305. doi: 10.1373/clinchem.2009.138420
[27]  Aye TT, Low TY, Bjorlykke Y, Barsnes H, Heck AJ, et al. (2012) Use of stable isotope dimethyl labeling coupled to selected reaction monitoring to enhance throughput by multiplexing relative quantitation of targeted proteins. Anal Chem 84: 4999–5006. doi: 10.1021/ac300596r
[28]  Kroksveen AC, Opsahl JA, Aye TT, Ulvik RJ, Berven FS (2011) Proteomics of human cerebrospinal fluid: Discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics. J Proteomics 74: 371–388. doi: 10.1016/j.jprot.2010.11.010
[29]  Felgenhauer K (1974) Protein size and cerebrospinal fluid composition. Klin Wochenschr 52: 1158–1164. doi: 10.1007/bf01466734
[30]  Vizcaino JA, Cote RG, Csordas A, Dianes JA, Fabregat A, et al. (2013) The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41: D1063–1069. doi: 10.1093/nar/gks1262
[31]  Helman LJ, Gazdar AF, Park JG, Cohen PS, Cotelingam JD, et al. (1988) Chromogranin A expression in normal and malignant human tissues. J Clin Invest 82: 686–690. doi: 10.1172/jci113648
[32]  Grijalva I, Li X, Marcillo A, Salzer JL, Levi AD (2006) Expression of neurotrimin in the normal and injured adult human spinal cord. Spinal Cord 44: 280–286. doi: 10.1038/sj.sc.3101842
[33]  Kuroda S, Oyasu M, Kawakami M, Kanayama N, Tanizawa K, et al. (1999) Biochemical characterization and expression analysis of neural thrombospondin-1-like proteins NELL1 and NELL2. Biochem Biophys Res Commun 265: 79–86. doi: 10.1006/bbrc.1999.1638
[34]  Kirkpatrick LL, Matzuk MM, Dodds DC, Perin MS (2000) Biochemical interactions of the neuronal pentraxins. Neuronal pentraxin (NP) receptor binds to taipoxin and taipoxin-associated calcium-binding protein 49 via NP1 and NP2. J Biol Chem 275: 17786–17792. doi: 10.1074/jbc.m002254200

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133