Approximately 50% of patients with primary colorectal carcinoma develop liver metastases. Understanding the genetic differences between primary colon cancer and their metastases to the liver is essential for devising a better therapeutic approach for this disease. We performed whole exome sequencing and copy number analysis for 15 triplets, each comprising normal colorectal tissue, primary colorectal carcinoma, and its synchronous matched liver metastasis. We analyzed the similarities and differences between primary colorectal carcinoma and matched liver metastases in regards to somatic mutations and somatic copy number alterationss. The genomic profiling demonstrated mutations in APC(73%), KRAS (33%), ARID1A and PIK3CA (6.7%) genes between primary colorectal and metastatic liver tumors. TP53 mutation was observed in 47% of the primary samples and 67% in liver metastatic samples. The grouped pairs, in hierarchical clustering showed similar somatic copy number alteration patterns, in contrast to the ungrouped pairs. Many mutations (including those of known key cancer driver genes) were shared in the grouped pairs. The ungrouped pairs exhibited distinct mutation patterns with no shared mutations in key driver genes. Four ungrouped liver metastasis samples had mutations in DNA mismatch repair genes along with hypermutations and a substantial number of copy number alterations. Our results suggest that about half of the metastatic colorectal carcinoma had the same clonal origin with their primary colorectal carcinomas, whereas remaining cases were genetically distinct from their primary carcinomas. These findings underscore the need to evaluate metastatic lesions separately for optimized therapy, rather than to extrapolate from primary tumor data.
References
[1]
Halberg RB, Dove WF (2007) Polyclonal tumors in the mammalian intestine: are interactions among multiple initiated clones necessary for tumor initiation, growth, and progression? Cell Cycle 6: 44–51. doi: 10.4161/cc.6.1.3651
Norton L (2008) Cancer stem cells, self-seeding, and decremented exponential growth: theoretical and clinical implications. Breast Dis 29: 27–36.
[4]
Parsons BL (2008) Many different tumor types have polyclonal tumor origin: Evidence and implications. Mutation Research/Reviews in Mutation Research 659: 232–247 doi:10.1016/j.mrrev.2008.05.004.
[5]
Visvader JE (2011) Cells of origin in cancer. Nature 469: 314–322 doi:10.1038/nature09781.
[6]
Talmadge JE, Fidler IJ (2010) AACR Centennial Series: The Biology of Cancer Metastasis: Historical Perspective. Cancer Res 70: 5649–5669 doi:10.1158/0008-5472.CAN-10-1040.
[7]
McCune CS, Schapira DV, Henshaw EC (1981) Specific immunotherapy of advanced renal carcinoma: evidence for the polyclonality of metastases. Cancer 47: 1984–1987. doi: 10.1002/1097-0142(19810415)47:8<1984::aid-cncr2820470814>3.0.co;2-j
[8]
Siegmund KD, Marjoram P, Tavaré S, Shibata D (2009) Many colorectal cancers are “flat” clonal expansions. Cell Cycle 8: 2187–2193. doi: 10.4161/cc.8.14.9151
[9]
Palena C, Fernando RI, Litzinger MT, Hamilton DH, Huang B, et al. (2011) Strategies to target molecules that control the acquisition of a mesenchymal-like phenotype by carcinoma cells. Experimental Biology and Medicine 236: 537–545 doi:10.1258/ebm.2011.010367.
[10]
Cho E, Smith-Warner SA, Spiegelman D, Beeson WL, Brandt PAvd, et al. (2004) Dairy Foods, Calcium, and Colorectal Cancer: A Pooled Analysis of 10 Cohort Studies. JNCI J Natl Cancer Inst 96: 1015–1022 doi:10.1093/jnci/djh185.
[11]
Stürmer T, Glynn RJ, Lee I-M, Christen WG, Hennekens CH (2000) Lifetime Cigarette Smoking and Colorectal Cancer Incidence in the Physicians' Health Study I. JNCI J Natl Cancer Inst. 92: 1178–1181 doi:10.1093/jnci/92.14.1178.
[12]
Van Cutsem E, Oliveira J (2009) On behalf of the ESMO Guidelines Working Group (2009) Advanced colorectal cancer: ESMO Clinical Recommendations for diagnosis, treatment and follow-up. Annals of Oncology 20: iv61–iv63 doi:10.1093/annonc/mdp130.
[13]
Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, et al. (2006) Epidemiology and Management of Liver Metastases From Colorectal Cancer. Ann Surg 244: 254–259 doi:10.1097/01.sla.0000217629.94941.cf.
[14]
Dix BR, Robbins PD, Spagnolo DV, Padovan GL, House AK, et al. (1995) Clonal analysis of colorectal tumors using K-ras and p53 gene mutations as markers. Diagn Mol Pathol 4: 261–265. doi: 10.1097/00019606-199512000-00006
[15]
Fearon ER, Hamilton SR, Vogelstein B (1987) Clonal analysis of human colorectal tumors. Science 238: 193–197. doi: 10.1126/science.2889267
[16]
Beutler E, Collins Z, Irwin LE (1967) Value of Genetic Variants of Glucose-6-Phosphate Dehydrogenase in Tracing the Origin of Malignant Tumors. New England Journal of Medicine 276: 389–391 doi:10.1056/NEJM196702162760706.
[17]
Hsu SH, Luk GD, Krush AJ, Hamilton SR, Hoover HH Jr (1983) Multiclonal origin of polyps in Gardner syndrome. Science 221: 951–953. doi: 10.1126/science.6879192
[18]
Turajlic S, Furney SJ, Lambros MB, Mitsopoulos C, Kozarewa I, et al. (2012) Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res 22: 196–207 doi:10.1101/gr.125591.111.
[19]
Campbell PJ, Yachida S, Mudie LJ, Stephens PJ, Pleasance ED, et al. (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467: 1109–1113 doi:10.1038/nature09460.
[20]
Yachida S, Jones S, Bozic I, Antal T, Leary R, et al. (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467: 1114–1117 doi:10.1038/nature09515.
[21]
Liu W, Laitinen S, Khan S, Vihinen M, Kowalski J, et al. (2009) Copy Number Analysis Indicates Monoclonal Origin of Lethal Metastatic Prostate Cancer. Nat Med 15: 559–565 doi:10.1038/nm.1944.
[22]
Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9: 302–312 doi:10.1038/nrc2627.
[23]
Torres L, Ribeiro FR, Pandis N, Andersen JA, Heim S, et al. (2007) Intratumor genomic heterogeneity in breast cancer with clonal divergence between primary carcinomas and lymph node metastases. Breast Cancer Res Treat 102: 143–155 doi:10.1007/s10549-006-9317-6.
[24]
Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, et al. (2007) Patterns of somatic mutation in human cancer genomes. Nature 446: 153–158 doi:10.1038/nature05610.
[25]
Knijn N, Mekenkamp LJM, Klomp M, Vink-B?rger ME, Tol J, et al. (2011) KRAS mutation analysis: a comparison between primary tumours and matched liver metastases in 305 colorectal cancer patients. Br J Cancer 104: 1020–1026 doi:10.1038/bjc.2011.26.
[26]
Baldus SE, Schaefer K-L, Engers R, Hartleb D, Stoecklein NH, et al. (2010) Prevalence and Heterogeneity of KRAS, BRAF, and PIK3CA Mutations in Primary Colorectal Adenocarcinomas and Their Corresponding Metastases. Clin Cancer Res 16: 790–799 doi:10.1158/1078-0432.CCR-09-2446.
[27]
Kim M-J, Lee HS, Kim JH, Kim YJ, Kwon JH, et al. (2012) Different metastatic pattern according to the KRAS mutational status and site-specific discordance of KRAS status in patients with colorectal cancer. BMC Cancer 12: 347 doi:10.1186/1471-2407-12-347.
[28]
Albanese I, Scibetta AG, Migliavacca M, Russo A, Bazan V, et al. (2004) Heterogeneity within and between primary colorectal carcinomas and matched metastases as revealed by analysis of Ki-ras and p53 mutations. Biochemical and Biophysical Research Communications 325: 784–791 doi:10.1016/j.bbrc.2004.10.111.
[29]
Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138: 2073–2087.e3 doi:10.1053/j.gastro.2009.12.064.
[30]
Dong G, Guo X, Fu X, Wan S, Zhou F, et al. (2012) Potentially functional genetic variants in KDR gene as prognostic markers in patients with resected colorectal cancer. Cancer Sci 103: 561–568 doi:10.1111/j.1349-7006.2011.02194.x.
[31]
Wang L, Tsutsumi S, Kawaguchi T, Nagasaki K, Tatsuno K, et al. (2012) Whole-exome sequencing of human pancreatic cancers and characterization of genomic instability caused by MLH1 haploinsufficiency and complete deficiency. Genome Res 22: 208–219 doi:10.1101/gr.123109.111.
[32]
Nakao K, Mehta KR, Fridlyand J, Moore DH, Jain AN, et al. (2004) High-resolution analysis of DNA copy number alterations in colorectal cancer by array-based comparative genomic hybridization. Carcinogenesis 25: 1345–1357 doi:10.1093/carcin/bgh134.
[33]
Trautmann K, Terdiman JP, French AJ, Roydasgupta R, Sein N, et al. (2006) Chromosomal Instability in Microsatellite-Unstable and Stable Colon Cancer. Clin Cancer Res 12: 6379–6385 doi:10.1158/1078-0432.CCR-06-1248.
[34]
Jasmine F, Rahaman R, Dodsworth C, Roy S, Paul R, et al. (2012) A Genome-Wide Study of Cytogenetic Changes in Colorectal Cancer Using SNP Microarrays: Opportunities for Future Personalized Treatment. PLoS ONE 7: e31968 doi:10.1371/journal.pone.0031968.
[35]
Jones AM, Douglas EJ, Halford SE, Fiegler H, Gorman PA, et al. (2005) Array-CGH analysis of microsatellite-stable, near-diploid bowel cancers and comparison with other types of colorectal carcinoma. Oncogene 24: 118–129 doi:10.1038/sj.onc.1208194.
[36]
Goel A, Arnold CN, Niedzwiecki D, Chang DK, Ricciardiello L, et al. (2003) Characterization of Sporadic Colon Cancer by Patterns of Genomic Instability. Cancer Res 63: 1608–1614.
[37]
Camps J, Armengol G, Rey J del, Lozano JJ, Vauhkonen H, et al. (2006) Genome-wide differences between microsatellite stable and unstable colorectal tumors. Carcinogenesis 27: 419–428 doi:10.1093/carcin/bgi244.
[38]
Li LS, Kim N-G, Kim SH, Park C, Kim H, et al. (2003) Chromosomal imbalances in the colorectal carcinomas with microsatellite instability. Am J Pathol 163: 1429–1436 doi:10.1016/S0002-9440(10)63500-6.
[39]
Spratlin JL, Cohen RB, Eadens M, Gore L, Camidge DR, et al. (2010) Phase I Pharmacologic and Biologic Study of Ramucirumab (IMC-1121B), a Fully Human Immunoglobulin G1 Monoclonal Antibody Targeting the Vascular Endothelial Growth Factor Receptor-2. JCO 28: 780–787 doi:10.1200/JCO.2009.23.7537.
[40]
Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407: 249–257 doi:10.1038/35025220.
[41]
Wang Y, Zheng Y, Zhang W, Yu H, Lou K, et al. (2007) Polymorphisms of KDR gene are associated with coronary heart disease. J Am Coll Cardiol 50: 760–767 doi:10.1016/j.jacc.2007.04.074.
[42]
Zhang W, Sun K, Zhen Y, Wang D, Wang Y, et al. (2009) VEGF receptor-2 variants are associated with susceptibility to stroke and recurrence. Stroke 40: 2720–2726 doi:10.1161/STROKEAHA.109.554394.
[43]
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25: 1754–1760 doi:10.1093/bioinformatics/btp324.
[44]
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics 43: 491–498 doi:10.1038/ng.806.
[45]
Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, et al. (2012) VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22: 568–576 doi:10.1101/gr.129684.111.
[46]
Saunders CT, Wong WSW, Swamy S, Becq J, Murray LJ, et al. (2012) Strelka: accurate somatic small-variant calling from sequenced tumor–normal sample pairs. Bioinformatics 28: 1811–1817 doi:10.1093/bioinformatics/bts271.
[47]
Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, et al. (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotech 31: 213–219 doi:10.1038/nbt.2514.
[48]
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucl Acids Res 38: e164–e164 doi:10.1093/nar/gkq603.
[49]
Consortium T 1000 GP (2010) A map of human genome variation from population-scale sequencing. Nature 467: 1061–1073 doi:10.1038/nature09534.
[50]
Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, et al. (2010) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Research 39: D945–D950 doi:10.1093/nar/gkq929.