全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Phosphodiesterase 3/4 Inhibitor Zardaverine Exhibits Potent and Selective Antitumor Activity against Hepatocellular Carcinoma Both In Vitro and In Vivo Independently of Phosphodiesterase Inhibition

DOI: 10.1371/journal.pone.0090627

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hepatocellular carcinoma (HCC) is the fifth common malignancy worldwide and the third leading cause of cancer-related death. Targeted therapies for HCC are being extensively developed with the limited success of sorafinib. In the present study, we investigated the potential antitumor activity of zardaverine, a dual-selective phosphodiesterase (PDE) 3/4 inhibitor in HCC cells both in vitro and in vivo. Although all zardaverine, PDE3 inhibitor trequinsin and PDE4 inhibitor rolipram increased intracellular cAMP levels through inhibiting PDE activity, only zardaverine significantly and selectively inhibited the proliferation of certain HCC cells, indicating that the antitumor activity of zardaverine is independent of PDE3/4 inhibition and intracellular cAMP levels. Further studies demonstrated that zardaverine induced G0/G1 phase cell cycle arrest of sensitive HCC cells through dysregulating cell cycle-associated proteins, including Cdk4, Cdk6, Cdk2, Cyclin A, Cyclin E, p21 and Rb. Notably, Rb expression was reversely related to the cell sensitivity to zardaverine. The present findings indicate that zardaverine may have potential as targeted therapies for some HCC, and the likely mechanism of action underlying its selective antitumor activity may be related to its regulation of Rb or Rb-associated signaling in cell cycles.

References

[1]  Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2: 533–543. doi: 10.1016/s1470-2045(01)00486-7
[2]  Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, et al. (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7: 3129–3140. doi: 10.1158/1535-7163.mct-08-0013
[3]  Liu L, Cao Y, Chen C, Zhang X, McNabola A, et al. (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res 66: 11851–11858. doi: 10.1158/0008-5472.can-06-1377
[4]  Wei Z, Doria C, Liu Y (2013) Targeted therapies in the treatment of advanced hepatocellular carcinoma. Clin Med Insights Oncol 7: 87–102. doi: 10.4137/cmo.s7633
[5]  Dumont JE, Jauniaux JC, Roger PP (1989) The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci 14: 67–71. doi: 10.1016/0968-0004(89)90046-7
[6]  Osinski MT, Schror K (2000) Inhibition of platelet-derived growth factor-induced mitogenesis by phosphodiesterase 3 inhibitors: role of protein kinase A in vascular smooth muscle cell mitogenesis. Biochem Pharmacol 60: 381–387. doi: 10.1016/s0006-2952(00)00328-2
[7]  Schmitt JM, Stork PJ (2001) Cyclic AMP-mediated inhibition of cell growth requires the small G protein Rap1. Mol Cell Biol 21: 3671–3683. doi: 10.1128/mcb.21.11.3671-3683.2001
[8]  Grader-Beck T, van Puijenbroek AA, Nadler LM, Boussiotis VA (2003) cAMP inhibits both Ras and Rap1 activation in primary human T lymphocytes, but only Ras inhibition correlates with blockade of cell cycle progression. Blood 101: 998–1006. doi: 10.1182/blood-2002-06-1665
[9]  Chen TC, Hinton DR, Zidovetzki R, Hofman FM (1998) Up-regulation of the cAMP/PKA pathway inhibits proliferation, induces differentiation, and leads to apoptosis in malignant gliomas. Lab Invest 78: 165–174.
[10]  Lee J, Choi YH, Nguyen P, Kim JS, Lee SJ, et al. (1999) Cyclic AMP induces inhibition of cyclin A expression and growth arrest in human hepatoma cells. Biochim Biophys Acta 1449: 261–268. doi: 10.1016/s0167-4889(99)00019-1
[11]  Liu L, Xie Y, Lou L (2005) Cyclic AMP inhibition of proliferation of hepatocellular carcinoma cells is mediated by Akt. Cancer Biol Ther 4: 1240–1247. doi: 10.4161/cbt.4.11.2099
[12]  Lugnier C (2006) Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agents. Pharmacol Ther 109: 366–398. doi: 10.1016/j.pharmthera.2005.07.003
[13]  Conti M, Jin SL (1999) The molecular biology of cyclic nucleotide phosphodiesterases. Prog Nucleic Acid Res Mol Biol 63: 1–38. doi: 10.1016/s0079-6603(08)60718-7
[14]  Soderling SH, Beavo JA (2000) Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr Opin Cell Biol 12: 174–179. doi: 10.1016/s0955-0674(99)00073-3
[15]  Marko D, Pahlke G, Merz KH, Eisenbrand G (2000) Cyclic 3',5'-nucleotide phosphodiesterases: potential targets for anticancer therapy. Chem Res Toxicol 13: 944–948. doi: 10.1021/tx000090l
[16]  Drees M, Zimmermann R, Eisenbrand G (1993) 3',5'-Cyclic nucleotide phosphodiesterase in tumor cells as potential target for tumor growth inhibition. Cancer Res 53: 3058–3061.
[17]  Merz KH, Marko D, Regiert T, Reiss G, Frank W, et al. (1998) Synthesis of 7-benzylamino-6-chloro-2-piperazino-4-py?rrolidinopteridineand novel derivatives free of positional isomers. Potent inhibitors of cAMP-specific phosphodiesterase and of malignant tumor cell growth. J Med Chem 41: 4733–4743. doi: 10.1021/jm981021v
[18]  Yang L, Jackson E, Woerner BM, Perry A, Piwnica-Worms D, et al. (2007) Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res 67: 651–658. doi: 10.1158/0008-5472.can-06-2762
[19]  McEwan DG, Brunton VG, Baillie GS, Leslie NR, Houslay MD, et al. (2007) Chemoresistant KM12C colon cancer cells are addicted to low cyclic AMP levels in a phosphodiesterase 4-regulated compartment via effects on phosphoinositide 3-kinase. Cancer Res 67: 5248–5257. doi: 10.1158/0008-5472.can-07-0097
[20]  Ogawa R, Streiff MB, Bugayenko A, Kato GJ (2002) Inhibition of PDE4 phosphodiesterase activity induces growth suppression, apoptosis, glucocorticoid sensitivity, p53, and p21(WAF1/CIP1) proteins in human acute lymphoblastic leukemia cells. Blood 99: 3390–3397. doi: 10.1182/blood.v99.9.3390
[21]  Moon E, Lee R, Near R, Weintraub L, Wolda S, et al. (2002) Inhibition of PDE3B augments PDE4 inhibitor-induced apoptosis in a subset of patients with chronic lymphocytic leukemia. Clin Cancer Res 8: 589–595.
[22]  Schudt C, Hatzelmann A, Beume R, Tenor H (2011) Phosphodiesterase inhibitors: history of pharmacology. Handb Exp Pharmacol: 1–46.
[23]  Banner KH, Roberts NM, Page CP (1995) Differential effect of phosphodiesterase 4 inhibitors on the proliferation of human peripheral blood mononuclear cells from normals and subjects with atopic dermatitis. Br J Pharmacol 116: 3169–3174. doi: 10.1111/j.1476-5381.1995.tb15120.x
[24]  Gantner F, Tenor H, Gekeler V, Schudt C, Wendel A, et al. (1997) Phosphodiesterase profiles of highly purified human peripheral blood leukocyte populations from normal and atopic individuals: a comparative study. J Allergy Clin Immunol 100: 527–535. doi: 10.1016/s0091-6749(97)70146-5
[25]  Quan H, Liu H, Li C, Lou L (2009) 1,4-Diamino-2,3-dicyano-1,4-bis(methylth?io)butadiene(U0126) enhances the cytotoxicity of combretastatin A4 independently of mitogen-activated protein kinase kinase. J Pharmacol Exp Ther 330: 326–333. doi: 10.1124/jpet.109.153320
[26]  Schudt C, Winder S, Muller B, Ukena D (1991) Zardaverine as a selective inhibitor of phosphodiesterase isozymes. Biochem Pharmacol 42: 153–162. doi: 10.1016/0006-2952(91)90694-z
[27]  MacKenzie SJ, Houslay MD (2000) Action of rolipram on specific PDE4 cAMP phosphodiesterase isoforms and on the phosphorylation of cAMP-response-element-binding protein (CREB) and p38 mitogen-activated protein (MAP) kinase in U937 monocytic cells. Biochem J 347: 571–578. doi: 10.1042/0264-6021:3470571
[28]  Ruppert D, Weithmann KU (1982) HL 725, an extremely potent inhibitor of platelet phosphodiesterase and induced platelet aggregation in vitro. Life Sci 31: 2037–2043. doi: 10.1016/0024-3205(82)90095-9
[29]  Hamada Y, Kawachi K, Yamamoto T, Nakata T, Kashu Y, et al. (1999) Effects of single administration of a phosphodiesterase III inhibitor during cardiopulmonary bypass: comparison of milrinone and amrinone. Jpn Circ J 63: 605–609. doi: 10.1253/jcj.63.605
[30]  Swanton C (2004) Cell-cycle targeted therapies. Lancet Oncol 5: 27–36. doi: 10.1016/s1470-2045(03)01321-4
[31]  Malumbres M, Barbacid M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222–231. doi: 10.1038/35106065
[32]  Goodrich DW, Wang NP, Qian YW, Lee EY, Lee WH (1991) The retinoblastoma gene product regulates progression through the G1 phase of the cell cycle. Cell 67: 293–302. doi: 10.1016/0092-8674(91)90181-w
[33]  Yamanaka Y, Mammoto T, Kirita T, Mukai M, Mashimo T, et al. (2002) Epinephrine inhibits invasion of oral squamous carcinoma cells by modulating intracellular cAMP. Cancer Lett 176: 143–148. doi: 10.1016/s0304-3835(01)00764-9
[34]  Timoshenko AV, Xu G, Chakrabarti S, Lala PK, Chakraborty C (2003) Role of prostaglandin E2 receptors in migration of murine and human breast cancer cells. Exp Cell Res 289: 265–274. doi: 10.1016/s0014-4827(03)00269-6
[35]  Murata K, Kameyama M, Fukui F, Ohigashi H, Hiratsuka M, et al. (1999) Phosphodiesterase type III inhibitor, cilostazol, inhibits colon cancer cell motility. Clin Exp Metastasis 17: 525–530.
[36]  Sherr CJ (2000) The Pezcoller lecture: cancer cell cycles revisited. Cancer Res 60: 3689–3695.
[37]  Molinari M (2000) Cell cycle checkpoints and their inactivation in human cancer. Cell Prolif 33: 261–274. doi: 10.1046/j.1365-2184.2000.00191.x
[38]  Schafer KA (1998) The cell cycle: a review. Vet Pathol 35: 461–478. doi: 10.1177/030098589803500601
[39]  Sherr CJ (1996) Cancer cell cycles. Science 274: 1672–1677. doi: 10.1126/science.274.5293.1672
[40]  Nevins JR (2001) The Rb/E2F pathway and cancer. Hum Mol Genet 10: 699–703. doi: 10.1093/hmg/10.7.699
[41]  Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2: E65–67. doi: 10.1038/35008695
[42]  Chau BN, Wang JY (2003) Coordinated regulation of life and death by RB. Nat Rev Cancer 3: 130–138. doi: 10.1038/nrc993
[43]  Tan X, Wang JY (1998) The caspase-RB connection in cell death. Trends Cell Biol 8: 116–120. doi: 10.1016/s0962-8924(97)01208-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133