全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

From Spheric to Aspheric Solid Polymer Lenses: A Review

DOI: 10.1155/2011/197549

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper presents a new approach in the use of MEMS technology to fabricate micro-optofluidic polymer solid lenses in order to achieve the desired profile, focal length, numerical aperture, and spot size. The resulting polymer solid lenses can be applied in optical data storage systems, imaging systems, and automated optical inspection systems. In order to meet the various needs of different applications, polymer solid lenses may have a spherical or aspherical shape. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. The current trend in polymer solid lenses is toward the fabrication of microlenses with a high numerical aperture, small clear aperture (<2?mm), and high transmittance. In this paper we focus on the use of thermal energy and electrostatic force in shaping the lens profile, including both spherical and aspherical lenses. In addition, the paper discusses how to fabricate a lens with a high numerical aperture of 0.6 using MEMS and also compares the optical characteristics of polymer lens materials, including SU-8, Norland Optical Adhesive (NOA), and cyclic olefin copolymer (COC). Finally, new concepts and applications related to micro-optofluidic lenses and polymer materials are also discussed. 1. Introduction Microlens arrays are currently utilized in a wide array of applications, including projection [1], smart phone cameras [2], data storage [3] and imaging devices [4]. Most of the lenses used in these types of applications have a fixed focal length and require precision positioning and high-resolution imaging. Because of this, the size, profile uniformity, numerical aperture, and focal length of microlens arrays are very important factors in relation to system integration. The focuses of optical systems employing fixed-focus lenses are generally accomplished using a servo control system. Solid fixed-focus lens fabrication concepts and methods are quite different from those of microtunable lenses. As a consequence, this paper only compares the fabrication and design methods for fixed-focus spherical and aspherical lenses. The method of fabricating polymer solid lenses is different from methods used to fabricate tunable lenses with variable focal length or needing an external control system to change the lens geometry. A variety of techniques for the fabrication of microlenses already exist. Recently, a variety of fabrication techniques for microlenses have been proposed and demonstrated, such

References

[1]  J. W. Pan, C. M. Wang, W. S. Sun, and J. Y. Chang, “Portable digital micromirror device projector using a prism,” Applied Optics, vol. 46, no. 22, pp. 5097–5102, 2007.
[2]  S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Applied Physics Letters, vol. 85, no. 7, pp. 1128–1130, 2004.
[3]  B. H. W. Hendriks, M. A. J. Van As, and A. A. M. Van Alem, “Miniaturised high-numerical aperture singlet plastic objective for optical recording,” Japanese Journal of Applied Physics A, vol. 44, no. 9, pp. 6564–6567, 2005.
[4]  C. Ke, X. Yi, J. Lai, and S. Chen, “Research on hybrid integration technology between charge-coupled devices and diffractive microlens arrays,” Journal of Micromechanics and Microengineering, vol. 14, no. 1, pp. 125–128, 2004.
[5]  D. Daly, R. F. Stevens, M. C. Hutley, and N. Davies, “The manufacture of microlenses by melting photoresist,” Measurement Science and Technology, vol. 1, no. 8, article 016, pp. 759–766, 1990.
[6]  C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Optics Express, vol. 15, no. 12, pp. 7140–7145, 2007.
[7]  H. Yang, C. K. Chao, T. H. Lin, and C. P. Lin, “Fabrication of microlens array with graduated sags using UV proximity printing method,” Microsystem Technologies, vol. 12, no. 1-2, pp. 82–90, 2005.
[8]  Y. Sakurai, S. Okuda, H. Nishiguchi, N. Nagayama, and M. Yokoyama, “Microlens array fabrication based on polymer electrodeposition,” Journal of Materials Chemistry, vol. 13, no. 8, pp. 1862–1864, 2003.
[9]  K. H. Jeong, G. L. Lin, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” in Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems (MEMS '04), pp. 37–40, 2004.
[10]  M. H. Wu, K. E. Paul, and G. M. Whitesides, “Patterning flood illumination with microlens arrays,” Applied Optics, vol. 41, no. 13, pp. 2575–2585, 2002.
[11]  C. C. Cheng, C. A. Chang, and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Optics Express, vol. 14, no. 9, pp. 4101–4106, 2006.
[12]  M. Vallet, B. Berge, and L. Vovelle, “Electrowetting of water and aqueous solutions on poly(ethylene terephthalate) insulating films,” Polymer, vol. 37, no. 12, pp. 2465–2470, 1996.
[13]  C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Optics Express, vol. 15, no. 12, pp. 7140–7145, 2007.
[14]  H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Optics Express, vol. 16, no. 4, pp. 2646–2652, 2008.
[15]  H. Ren, H. Xianyu, S. Xu, and S. T. Wu, “Adaptive dielectric liquid lens,” Optics Express, vol. 16, no. 19, pp. 14954–14960, 2008.
[16]  K. -Y. Hung, F. -G. Tseng, and H. -S. Khoo, “Integrated three-dimensional optical MEMS for chip-based fluorescence detection,” Journal of Micromechanics and Microengineering, vol. 19, no. 4, Article ID 045014, pp. 1–10, 2009.
[17]  http://www.3m.com/index.jhtml.
[18]  K. Y. Hung, F. G. Tseng, and T. H. Liao, “Electrostatic-force-modulated microaspherical lens for optical pickup head,” Journal of Microelectromechanical Systems, vol. 17, no. 2, pp. 370–380, 2008.
[19]  K. Y. Hung, L. W. Chang, F. G. Tseng, J. C. Chiou, and Y. Chiu, “Optimum electrostatic force control for fabricating a hybrid UV-curable aspheric lens,” Journal of Micromechanics and Microengineering, vol. 20, no. 7, Article ID 075001, 2010.
[20]  K. Y. Hung, C. C. Fan, F. G. Tseng, and Y. K. Chen, “Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic,” Optics Express, vol. 18, no. 6, pp. 6014–6023, 2010.
[21]  K.-Y. Hung, Y.-K. Chen, S.-H. Huang, and D.-C. Shye, “Molding and hot forming techniques for fabricating plastic aspheric lenses with high blue-light transmittance,” Microsystem Technologies, vol. 16, no. 8-9, pp. 1439–1444, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133