[1] | O'Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34: 171–175. doi: 10.1016/0006-8993(71)90358-1
|
[2] | Burgess N (2008) Spatial cognition and the brain. Annals of the New York Academy of Sciences 1124: 77–97. doi: 10.1196/annals.1440.002
|
[3] | Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience 31: 69–89. doi: 10.1146/annurev.neuro.31.061307.090723
|
[4] | Solstad T, Moser EI, Einevoll GT (2006) From grid cells to place cells : a mathematical model. Hippocampus 1031: 1026–1031. doi: 10.1002/hipo.20244
|
[5] | Etienne AS, Maurer R, Sguinot V (1996) Path integration in mammals and its interaction with visual landmarks. Journal of Experimental Biology 199: 201–9.
|
[6] | Jeffery KJ (2007) Self-localization and the entorhinal-hippocampal system. Current Opinion in Neurobiology 17: 684–91. doi: 10.1016/j.conb.2007.11.008
|
[7] | Hartley T, Burgess N, Lever C, Cacucci F, O'Keefe J (2000) Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus 10: 369–79. doi: 10.1002/1098-1063(2000)10:4<369::aid-hipo3>3.0.co;2-0
|
[8] | Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences 27: 712–9. doi: 10.1016/j.tins.2004.10.007
|
[9] | Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415: 429–33. doi: 10.1038/415429a
|
[10] | K?rding KP, Ku Sp, Wolpert DM (2004) Bayesian integration in force estimation. Journal of Neurophysiology 92: 3161–3165. doi: 10.1152/jn.00275.2004
|
[11] | Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychological Bulletin 133: 625–37. doi: 10.1037/0033-2909.133.4.625
|
[12] | Pfuhl G, Tjelmeland H, Biegler R (2011) Precision and reliability in animal navigation. Bulletin of Mathematical Biology 73: 951–77. doi: 10.1007/s11538-010-9547-y
|
[13] | MacNeilage PR, Ganesan N, Angelaki DE (2008) Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference. Journal of Neurophysiology 100: 2981–96. doi: 10.1152/jn.90677.2008
|
[14] | Cheung A, Ball D, Milford M, Wyeth G, Wiles J (2012) Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration. PLoS Computational Biology 8: e1002651. doi: 10.1371/journal.pcbi.1002651
|
[15] | Colombo M, Seriès P (2012) Bayes in the brain - on Bayesian modelling in neuroscience. The British Journal for the Philosophy of Science 63: 697–723. doi: 10.1093/bjps/axr043
|
[16] | Hafting T, Fyhn M, Molden S, Moser M, Moser E (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436: 801–806. doi: 10.1038/nature03721
|
[17] | McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nature Reviews Neuroscience 7: 663–78. doi: 10.1038/nrn1932
|
[18] | O'Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15: 853–866. doi: 10.1002/hipo.20115
|
[19] | Doeller CF, Barry C, Burgess N (2012) From cells to systems : grids and boundaries in spatial memory. The Neuroscientist 18: 556–566. doi: 10.1177/1073858411422115
|
[20] | Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annual Review of Neuroscience 30: 181–207. doi: 10.1146/annurev.neuro.29.051605.112854
|
[21] | Baumann O, Mattingley JB (2010) Medial parietal cortex encodes perceived heading direction in humans. Journal of Neuroscience 30: 12897–12901. doi: 10.1523/jneurosci.3077-10.2010
|
[22] | Lever C, Burton S, Jeewajee A, O Keefe J, Burgess N (2009) Boundary Vector Cells in the subiculum of the hippocampal formation. Journal of Neuroscience 29: 9771–7. doi: 10.1523/jneurosci.1319-09.2009
|
[23] | Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322: 1865–8. doi: 10.1126/science.1166466
|
[24] | Barry C, Lever C, Hayman R, Hartley T, Burton S, et al. (2006) The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences 17: 71–97. doi: 10.1515/revneuro.2006.17.1-2.71
|
[25] | O'Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34: 171–175. doi: 10.1016/0006-8993(71)90358-1
|
[26] | Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, et al. (2003) Cellular networks underlying human spatial navigation. Nature 424: 184–187. doi: 10.1038/nature01964
|
[27] | Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Research 40: 2201–2209. doi: 10.1016/s0042-6989(00)00081-x
|
[28] | Okada K, Fujimoto Y (2011) Grid-based localization and mapping method without odometry information. In: IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society. IEEE, pp. 159–164.
|
[29] | McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, et al. (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. Journal of Experimental Biology 199: 173–185.
|
[30] | Squire LR, Stark CEL, Clark RE (2004) The medial temporal lobe. Annual Review of Neuroscience 27: 279–306. doi: 10.1146/annurev.neuro.27.070203.144130
|
[31] | Montaldi D, Mayes AR (2010) The role of recollection and familiarity in the functional differentiation of the medial temporal lobes. Hippocampus 20: 1291–1314. doi: 10.1002/hipo.20853
|
[32] | Lisman J, Redish AD (2009) Prediction, sequences and the hippocampus. Philosophical transactions of the Royal Society of London Series B, Biological Sciences 364: 1193–201. doi: 10.1098/rstb.2008.0316
|
[33] | Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nature reviews Neuroscience 9: 182–94. doi: 10.1038/nrn2335
|
[34] | Lee SA, Sovrano VA, Spelke ES (2012) Navigation as a source of geometric knowledge: Young children's use of length, angle, distance, and direction in a reorientation task. Cognition 123: 144–61. doi: 10.1016/j.cognition.2011.12.015
|
[35] | Young BJ, Fox GD, Eichenbaum H (1994) Correlates of hippocampal complex-spike cell activity in rats performing a nonspatial radial maze task. The Journal of neuroscience 14: 6553–6563.
|
[36] | Yoshioka JG (1929) Weber's law in the discrimination of maze distance by the white rat. University of California Publications in Psychology 4: 155–184. doi: 10.1192/bjp.77.317.413-d
|
[37] | Cheng K, Spetch ML (1998) Landmark-based spatial memory in birds and mammals. In: Healy S, editor, Spatial Representation in Animals, New York: Oxford University Press. pp. 1–17.
|
[38] | Negenborn R (2003) Robot localization and Kalman filters. Ph.D. thesis, Utrecht University.
|
[39] | Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: Part 1. IEEE Robotics Automation Magazine 13: 9–110. doi: 10.1109/mra.2006.1638022
|
[40] | Bromiley P (2003) Products and convolutions of Gaussian distributions. Medical School, Univ Manchester, Manchester, UK, Tech Rep 3: 2003.
|
[41] | Ahmed O, Mehta M (2009) The hippocampal rate code: anatomy, physiology and theory. Trends in neurosciences 32: 329–338. doi: 10.1016/j.tins.2009.01.009
|
[42] | Burke SN, Maurer AP, Nematollahi S, Uprety AR, Wallace JL, et al. (2011) The inuence of objects on place field expression and size in distal hippocampal CA1. Hippocampus 21: 783–801. doi: 10.1002/hipo.20929
|
[43] | Ma WJ, Beck JM, Pouget A (2008) Spiking networks for Bayesian inference and choice. Current Opinion in Neurobiology 18: 217–22. doi: 10.1016/j.conb.2008.07.004
|
[44] | Koch C, Segev I (2000) The role of single neurons in information processing. Nature Neuroscience 3 Suppl: 1171–1177. doi: 10.1038/81444
|
[45] | Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature Neuroscience 8: 1667–1676. doi: 10.1038/nn1599
|
[46] | Takahashi H, Magee JC (2009) Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62: 102–111. doi: 10.1016/j.neuron.2009.03.007
|
[47] | Katz Y, Kath WL, Spruston N, Hasselmo ME (2007) Coincidence detection of place and temporal context in a network model of spiking hippocampal neurons. PLoS Computational Biology 3: e234. doi: 10.1371/journal.pcbi.0030234.eor
|
[48] | Nezis P, Van Rossum MCW (2011) Accurate multiplication with noisy spiking neurons. Journal of Neural Engineering 8: 034005. doi: 10.1088/1741-2560/8/3/034005
|
[49] | Deneve S (2008) Bayesian spiking neurons I: inference. Neural computation 20: 91–117. doi: 10.1162/neco.2008.20.1.91
|
[50] | Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes. Nature Neuroscience 9: 1432–1438. doi: 10.1038/nn1790
|
[51] | Deneve S, Duhamel JR, Pouget A (2007) Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filters. The Journal of neuroscience 27: 5744–5756. doi: 10.1523/jneurosci.3985-06.2007
|
[52] | Rao RPN (2004) Bayesian computation in recurrent neural circuits. Neural Computation 16: 1–38. doi: 10.1162/08997660460733976
|
[53] | Hoyer PO, Hyv?rinen A (2003) Interpreting neural response variability as Monte Carlo sampling of the posterior, MIT Press, volume 15. p. 293.
|
[54] | Büsing L, Bill J, Nessler B, Maass W (2011) Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Computational Biology 7: e1002211. doi: 10.1371/journal.pcbi.1002211
|
[55] | Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A 20: 1434–1448. doi: 10.1364/josaa.20.001434
|
[56] | Rossant C, Leijon S, Magnusson A, Brette R (2011) Sensitivity of noisy neurons to coincident inputs. The Journal of Neuroscience 31: 17193–17206. doi: 10.1523/jneurosci.2482-11.2011
|
[57] | Brette R (2012) Computing with neural synchrony. PLoS Computational Biology 8: e1002561. doi: 10.1371/journal.pcbi.1002561
|
[58] | Szilagyi E, Halasy K, Somogyi P (1996) Physiological properties of anatomically identified basket and bistratified cells in the CAl area of the rat hippocampus in vitro. Hippocampus 6: 294–305. doi: 10.1002/(sici)1098-1063(1996)6:3<294::aid-hipo7>3.3.co;2-b
|
[59] | Zemankovics R, Káli S, Paulsen O, Freund T, Hájos N (2010) Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. The Journal of physiology 588: 2109–2132. doi: 10.1113/jphysiol.2009.185975
|
[60] | Harvey C, Collman F, Dombeck D, Tank D (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461: 941–946. doi: 10.1038/nature08499
|
[61] | Hoppensteadt F, Izhikevich E (1997) Weakly connected neural networks, volume 126. Springer.
|
[62] | Markus E, Barnes C, McNaughton B, Gladden V, Skaggs W (2004) Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus 4: 410–421. doi: 10.1002/hipo.450040404
|
[63] | Quirk G, Muller R, Kubie J (1990) The firing of hippocampal place cells in the dark depends on the rat's recent experience. The Journal of Neuroscience 10: 2008–2017.
|
[64] | Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Progress in Brain Research 83: 1–11. doi: 10.1016/s0079-6123(08)61237-6
|
[65] | Rapp P, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proceedings of the National Academy of Sciences 93: 9926–9930. doi: 10.1073/pnas.93.18.9926
|
[66] | Barry C, Bush D (2012) From A to Z: A potential role for grid cells in spatial navigation. Neural systems & circuits 2: 6. doi: 10.1186/2042-1001-2-6
|
[67] | Maurer AP, Vanrhoads SR, Sutherland GR, Lipa P, McNaughton BL (2005) Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus. Hippocampus 15: 841–52. doi: 10.1002/hipo.20114
|
[68] | Odobescu R (2010) Exteroceptive and interoceptive cue control of hippocampal place cells. Ph.D. thesis, UCL (University College London).
|
[69] | O'Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. Nature 381: 425–428. doi: 10.1038/381425a0
|
[70] | Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, et al. (2007) Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience 23: 349–398. doi: 10.1007/s10827-007-0038-6
|
[71] | Goodman DF, Brette R (2009) The brian simulator. Frontiers in neuroscience 3: 192. doi: 10.3389/neuro.01.026.2009
|
[72] | Myung IJ, Pitt MA (1997) Applying Occam's razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin & Review 4: 79–95. doi: 10.3758/bf03210778
|
[73] | Myung IJ, Pitt MA, Kim W (2005) Model evaluation, testing and selection. Handbook of cognition 422–436. doi: 10.4135/9781848608177.n19
|
[74] | Regier T (2003) Constraining computational models of cognition. In: Nadel L, editor, Encyclopedia of Cognitive Science, London: Macmillan. pp. 611–615.
|
[75] | Nardini M, Jones P, Bedford R, Braddick O (2008) Development of cue integration in human navigation. Current Biology 18: 689–93. doi: 10.1016/j.cub.2008.04.021
|
[76] | Shadlen M, Britten K, Newsome W, Movshon J (1996) A computational analysis of the relationship between neuronal and behavioral responses to visual motion. The Journal of Neuroscience 16: 1486–1510. doi: 10.1017/s095252380000715x
|
[77] | Stocker AA, Simoncelli EP (2006) Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience 9: 578–585. doi: 10.1038/nn1669
|
[78] | Canto C, Wouterlood F, Witter M (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural plasticity 2008 doi: 10.1155/2008/381243
|
[79] | Kajiwara R, Wouterlood FG, Sah A, Boekel AJ, Baks-te Bulte LT, et al. (2008) Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1 - an anatomical study in the rat. Hippocampus 18: 266–280. doi: 10.1002/hipo.20385
|
[80] | Witter M (2011) Entorhinal cortex. Scholarpedia 6: 4380. doi: 10.4249/scholarpedia.4380
|
[81] | Burgess N, OKeefe J (2011) Models of place and grid cell firing and theta rhythmicity. Current opinion in neurobiology 21: 734–744. doi: 10.1016/j.conb.2011.07.002
|
[82] | Samu D, Eros P, Ujfalussy B, Kiss T (2009) Robust path integration in the entorhinal grid cell system with hippocampal feed-back. Biological Cybernetics 101: 19–34. doi: 10.1007/s00422-009-0311-z
|
[83] | Sreenivasan S, Fiete I (2011) Grid cells generate an analog error-correcting code for singularly precise neural computation. Nature neuroscience 14: 1330–1337. doi: 10.1038/nn.2901
|
[84] | Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, et al. (2013) Grid cells require excitatory drive from the hippocampus. Nature neuroscience 16: 309–317. doi: 10.1038/nn.3311
|
[85] | Burgess N, Barry C, O'Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17: 801–812. doi: 10.1002/hipo.20327
|
[86] | Hasselmo ME (2008) Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 18: 1213–1229. doi: 10.1002/hipo.20512
|
[87] | Zilli Ea (2012) Models of grid cell spatial firing published 2005–2011. Frontiers in Neural Circuits 6: 1–17. doi: 10.3389/fncir.2012.00016
|
[88] | Engel TA, Schimansky-Geier L, Herz AV, Schreiber S, Erchova I (2008) Subthreshold membranepotential resonances shape spike-train patterns in the entorhinal cortex. Journal of neurophysiology 100: 1576–1589. doi: 10.1152/jn.01282.2007
|
[89] | Dickson CT, Magistretti J, Shalinsky M, Hamam B, Alonso A (2000) Oscillatory activity in entorhinal neurons and circuits: Mechanisms and function. Annals of the New York Academy of Sciences 911: 127–150. doi: 10.1111/j.1749-6632.2000.tb06723.x
|
[90] | Dickson CT, de Curtis M (2002) Enhancement of temporal and spatial synchronization of entorhinal gamma activity by phase reset. Hippocampus 12: 447–456. doi: 10.1002/hipo.10013
|
[91] | Deshmukh SS, Knierim JJ (2013) Inuence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus 23: 253–267. doi: 10.1002/hipo.22101
|
[92] | Azzalini A (2005) The Skew-normal Distribution and Related Multivariate Families*. Scandinavian Journal of Statistics 32: 159–188. doi: 10.1111/j.1467-9469.2005.00426.x
|
[93] | Mehta MR, Quirk MC, Wilson MA (2000) Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25: 707–715. doi: 10.1016/s0896-6273(00)81072-7
|
[94] | Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, et al. (2008) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18: 1200–1212. doi: 10.1002/hipo.20504
|
[95] | Fox CW, Prescott TJ (2010) Hippocampus as unitary coherent particle filter. In: IJCNN. IEEE Press, pp. 1–8.
|
[96] | Joseph D, Monaco JJK, Zhang K (2011) Sensory feedback, error correction, and remapping in a multiple oscillator model of place cell activity. Frontiers in Computational Neuroscience 5. doi: 10.3389/fncom.2011.00039
|
[97] | Sheynikhovich D, Chavarriaga R, Strosslin T, Arleo A, Gerstner W (2009) Is there a geometric module for spatial orientation? Insights from a rodent navigation model. Psychological review 116: 540. doi: 10.1037/a0016170
|
[98] | Zemel R, Dayan P, Pouget A (1998) Probabilistic interpretation of population codes. Neural Computation 10: 403–430. doi: 10.1162/089976698300017818
|
[99] | Lee I, Yoganarasimha D, Rao G, Knierim JJ (2004) Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430: 456–459. doi: 10.1038/nature02739
|
[100] | Yang T, Shadlen MN (2007) Probabilistic reasoning by neurons. Nature 447: 1075–1080. doi: 10.1038/nature05852
|
[101] | Fiser J, Berkes P, Orbn G, Lengyel M (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends in Cognitive Sciences 14: 119–130. doi: 10.1016/j.tics.2010.01.003
|
[102] | Hancock PA, Newell KM (1985) The movement speed-accuracy relationship in space-time. In: Motor Behavior, Springer. pp. 153–188.
|