全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Bayesian Integration of Information in Hippocampal Place Cells

DOI: 10.1371/journal.pone.0089762

Full-Text   Cite this paper   Add to My Lib

Abstract:

Accurate spatial localization requires a mechanism that corrects for errors, which might arise from inaccurate sensory information or neuronal noise. In this paper, we propose that Hippocampal place cells might implement such an error correction mechanism by integrating different sources of information in an approximately Bayes-optimal fashion. We compare the predictions of our model with physiological data from rats. Our results suggest that useful predictions regarding the firing fields of place cells can be made based on a single underlying principle, Bayesian cue integration, and that such predictions are possible using a remarkably small number of model parameters.

References

[1]  O'Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34: 171–175. doi: 10.1016/0006-8993(71)90358-1
[2]  Burgess N (2008) Spatial cognition and the brain. Annals of the New York Academy of Sciences 1124: 77–97. doi: 10.1196/annals.1440.002
[3]  Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain's spatial representation system. Annual Review of Neuroscience 31: 69–89. doi: 10.1146/annurev.neuro.31.061307.090723
[4]  Solstad T, Moser EI, Einevoll GT (2006) From grid cells to place cells : a mathematical model. Hippocampus 1031: 1026–1031. doi: 10.1002/hipo.20244
[5]  Etienne AS, Maurer R, Sguinot V (1996) Path integration in mammals and its interaction with visual landmarks. Journal of Experimental Biology 199: 201–9.
[6]  Jeffery KJ (2007) Self-localization and the entorhinal-hippocampal system. Current Opinion in Neurobiology 17: 684–91. doi: 10.1016/j.conb.2007.11.008
[7]  Hartley T, Burgess N, Lever C, Cacucci F, O'Keefe J (2000) Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus 10: 369–79. doi: 10.1002/1098-1063(2000)10:4<369::aid-hipo3>3.0.co;2-0
[8]  Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation. Trends in Neurosciences 27: 712–9. doi: 10.1016/j.tins.2004.10.007
[9]  Ernst MO, Banks MS (2002) Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415: 429–33. doi: 10.1038/415429a
[10]  K?rding KP, Ku Sp, Wolpert DM (2004) Bayesian integration in force estimation. Journal of Neurophysiology 92: 3161–3165. doi: 10.1152/jn.00275.2004
[11]  Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ (2007) Bayesian integration of spatial information. Psychological Bulletin 133: 625–37. doi: 10.1037/0033-2909.133.4.625
[12]  Pfuhl G, Tjelmeland H, Biegler R (2011) Precision and reliability in animal navigation. Bulletin of Mathematical Biology 73: 951–77. doi: 10.1007/s11538-010-9547-y
[13]  MacNeilage PR, Ganesan N, Angelaki DE (2008) Computational approaches to spatial orientation: from transfer functions to dynamic Bayesian inference. Journal of Neurophysiology 100: 2981–96. doi: 10.1152/jn.90677.2008
[14]  Cheung A, Ball D, Milford M, Wyeth G, Wiles J (2012) Maintaining a cognitive map in darkness: the need to fuse boundary knowledge with path integration. PLoS Computational Biology 8: e1002651. doi: 10.1371/journal.pcbi.1002651
[15]  Colombo M, Seriès P (2012) Bayes in the brain - on Bayesian modelling in neuroscience. The British Journal for the Philosophy of Science 63: 697–723. doi: 10.1093/bjps/axr043
[16]  Hafting T, Fyhn M, Molden S, Moser M, Moser E (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436: 801–806. doi: 10.1038/nature03721
[17]  McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ‘cognitive map’. Nature Reviews Neuroscience 7: 663–78. doi: 10.1038/nrn1932
[18]  O'Keefe J, Burgess N (2005) Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15: 853–866. doi: 10.1002/hipo.20115
[19]  Doeller CF, Barry C, Burgess N (2012) From cells to systems : grids and boundaries in spatial memory. The Neuroscientist 18: 556–566. doi: 10.1177/1073858411422115
[20]  Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annual Review of Neuroscience 30: 181–207. doi: 10.1146/annurev.neuro.29.051605.112854
[21]  Baumann O, Mattingley JB (2010) Medial parietal cortex encodes perceived heading direction in humans. Journal of Neuroscience 30: 12897–12901. doi: 10.1523/jneurosci.3077-10.2010
[22]  Lever C, Burton S, Jeewajee A, O Keefe J, Burgess N (2009) Boundary Vector Cells in the subiculum of the hippocampal formation. Journal of Neuroscience 29: 9771–7. doi: 10.1523/jneurosci.1319-09.2009
[23]  Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322: 1865–8. doi: 10.1126/science.1166466
[24]  Barry C, Lever C, Hayman R, Hartley T, Burton S, et al. (2006) The boundary vector cell model of place cell firing and spatial memory. Reviews in the Neurosciences 17: 71–97. doi: 10.1515/revneuro.2006.17.1-2.71
[25]  O'Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research 34: 171–175. doi: 10.1016/0006-8993(71)90358-1
[26]  Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, et al. (2003) Cellular networks underlying human spatial navigation. Nature 424: 184–187. doi: 10.1038/nature01964
[27]  Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vision Research 40: 2201–2209. doi: 10.1016/s0042-6989(00)00081-x
[28]  Okada K, Fujimoto Y (2011) Grid-based localization and mapping method without odometry information. In: IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society. IEEE, pp. 159–164.
[29]  McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, et al. (1996) Deciphering the hippocampal polyglot: the hippocampus as a path integration system. Journal of Experimental Biology 199: 173–185.
[30]  Squire LR, Stark CEL, Clark RE (2004) The medial temporal lobe. Annual Review of Neuroscience 27: 279–306. doi: 10.1146/annurev.neuro.27.070203.144130
[31]  Montaldi D, Mayes AR (2010) The role of recollection and familiarity in the functional differentiation of the medial temporal lobes. Hippocampus 20: 1291–1314. doi: 10.1002/hipo.20853
[32]  Lisman J, Redish AD (2009) Prediction, sequences and the hippocampus. Philosophical transactions of the Royal Society of London Series B, Biological Sciences 364: 1193–201. doi: 10.1098/rstb.2008.0316
[33]  Bird CM, Burgess N (2008) The hippocampus and memory: insights from spatial processing. Nature reviews Neuroscience 9: 182–94. doi: 10.1038/nrn2335
[34]  Lee SA, Sovrano VA, Spelke ES (2012) Navigation as a source of geometric knowledge: Young children's use of length, angle, distance, and direction in a reorientation task. Cognition 123: 144–61. doi: 10.1016/j.cognition.2011.12.015
[35]  Young BJ, Fox GD, Eichenbaum H (1994) Correlates of hippocampal complex-spike cell activity in rats performing a nonspatial radial maze task. The Journal of neuroscience 14: 6553–6563.
[36]  Yoshioka JG (1929) Weber's law in the discrimination of maze distance by the white rat. University of California Publications in Psychology 4: 155–184. doi: 10.1192/bjp.77.317.413-d
[37]  Cheng K, Spetch ML (1998) Landmark-based spatial memory in birds and mammals. In: Healy S, editor, Spatial Representation in Animals, New York: Oxford University Press. pp. 1–17.
[38]  Negenborn R (2003) Robot localization and Kalman filters. Ph.D. thesis, Utrecht University.
[39]  Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: Part 1. IEEE Robotics Automation Magazine 13: 9–110. doi: 10.1109/mra.2006.1638022
[40]  Bromiley P (2003) Products and convolutions of Gaussian distributions. Medical School, Univ Manchester, Manchester, UK, Tech Rep 3: 2003.
[41]  Ahmed O, Mehta M (2009) The hippocampal rate code: anatomy, physiology and theory. Trends in neurosciences 32: 329–338. doi: 10.1016/j.tins.2009.01.009
[42]  Burke SN, Maurer AP, Nematollahi S, Uprety AR, Wallace JL, et al. (2011) The inuence of objects on place field expression and size in distal hippocampal CA1. Hippocampus 21: 783–801. doi: 10.1002/hipo.20929
[43]  Ma WJ, Beck JM, Pouget A (2008) Spiking networks for Bayesian inference and choice. Current Opinion in Neurobiology 18: 217–22. doi: 10.1016/j.conb.2008.07.004
[44]  Koch C, Segev I (2000) The role of single neurons in information processing. Nature Neuroscience 3 Suppl: 1171–1177. doi: 10.1038/81444
[45]  Jarsky T, Roxin A, Kath WL, Spruston N (2005) Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nature Neuroscience 8: 1667–1676. doi: 10.1038/nn1599
[46]  Takahashi H, Magee JC (2009) Pathway interactions and synaptic plasticity in the dendritic tuft regions of CA1 pyramidal neurons. Neuron 62: 102–111. doi: 10.1016/j.neuron.2009.03.007
[47]  Katz Y, Kath WL, Spruston N, Hasselmo ME (2007) Coincidence detection of place and temporal context in a network model of spiking hippocampal neurons. PLoS Computational Biology 3: e234. doi: 10.1371/journal.pcbi.0030234.eor
[48]  Nezis P, Van Rossum MCW (2011) Accurate multiplication with noisy spiking neurons. Journal of Neural Engineering 8: 034005. doi: 10.1088/1741-2560/8/3/034005
[49]  Deneve S (2008) Bayesian spiking neurons I: inference. Neural computation 20: 91–117. doi: 10.1162/neco.2008.20.1.91
[50]  Ma WJ, Beck JM, Latham PE, Pouget A (2006) Bayesian inference with probabilistic population codes. Nature Neuroscience 9: 1432–1438. doi: 10.1038/nn1790
[51]  Deneve S, Duhamel JR, Pouget A (2007) Optimal sensorimotor integration in recurrent cortical networks: a neural implementation of Kalman filters. The Journal of neuroscience 27: 5744–5756. doi: 10.1523/jneurosci.3985-06.2007
[52]  Rao RPN (2004) Bayesian computation in recurrent neural circuits. Neural Computation 16: 1–38. doi: 10.1162/08997660460733976
[53]  Hoyer PO, Hyv?rinen A (2003) Interpreting neural response variability as Monte Carlo sampling of the posterior, MIT Press, volume 15. p. 293.
[54]  Büsing L, Bill J, Nessler B, Maass W (2011) Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Computational Biology 7: e1002211. doi: 10.1371/journal.pcbi.1002211
[55]  Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. Journal of the Optical Society of America A 20: 1434–1448. doi: 10.1364/josaa.20.001434
[56]  Rossant C, Leijon S, Magnusson A, Brette R (2011) Sensitivity of noisy neurons to coincident inputs. The Journal of Neuroscience 31: 17193–17206. doi: 10.1523/jneurosci.2482-11.2011
[57]  Brette R (2012) Computing with neural synchrony. PLoS Computational Biology 8: e1002561. doi: 10.1371/journal.pcbi.1002561
[58]  Szilagyi E, Halasy K, Somogyi P (1996) Physiological properties of anatomically identified basket and bistratified cells in the CAl area of the rat hippocampus in vitro. Hippocampus 6: 294–305. doi: 10.1002/(sici)1098-1063(1996)6:3<294::aid-hipo7>3.3.co;2-b
[59]  Zemankovics R, Káli S, Paulsen O, Freund T, Hájos N (2010) Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. The Journal of physiology 588: 2109–2132. doi: 10.1113/jphysiol.2009.185975
[60]  Harvey C, Collman F, Dombeck D, Tank D (2009) Intracellular dynamics of hippocampal place cells during virtual navigation. Nature 461: 941–946. doi: 10.1038/nature08499
[61]  Hoppensteadt F, Izhikevich E (1997) Weakly connected neural networks, volume 126. Springer.
[62]  Markus E, Barnes C, McNaughton B, Gladden V, Skaggs W (2004) Spatial information content and reliability of hippocampal CA1 neurons: effects of visual input. Hippocampus 4: 410–421. doi: 10.1002/hipo.450040404
[63]  Quirk G, Muller R, Kubie J (1990) The firing of hippocampal place cells in the dark depends on the rat's recent experience. The Journal of Neuroscience 10: 2008–2017.
[64]  Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Progress in Brain Research 83: 1–11. doi: 10.1016/s0079-6123(08)61237-6
[65]  Rapp P, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proceedings of the National Academy of Sciences 93: 9926–9930. doi: 10.1073/pnas.93.18.9926
[66]  Barry C, Bush D (2012) From A to Z: A potential role for grid cells in spatial navigation. Neural systems & circuits 2: 6. doi: 10.1186/2042-1001-2-6
[67]  Maurer AP, Vanrhoads SR, Sutherland GR, Lipa P, McNaughton BL (2005) Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus. Hippocampus 15: 841–52. doi: 10.1002/hipo.20114
[68]  Odobescu R (2010) Exteroceptive and interoceptive cue control of hippocampal place cells. Ph.D. thesis, UCL (University College London).
[69]  O'Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. Nature 381: 425–428. doi: 10.1038/381425a0
[70]  Brette R, Rudolph M, Carnevale T, Hines M, Beeman D, et al. (2007) Simulation of networks of spiking neurons: a review of tools and strategies. Journal of computational neuroscience 23: 349–398. doi: 10.1007/s10827-007-0038-6
[71]  Goodman DF, Brette R (2009) The brian simulator. Frontiers in neuroscience 3: 192. doi: 10.3389/neuro.01.026.2009
[72]  Myung IJ, Pitt MA (1997) Applying Occam's razor in modeling cognition: A Bayesian approach. Psychonomic Bulletin & Review 4: 79–95. doi: 10.3758/bf03210778
[73]  Myung IJ, Pitt MA, Kim W (2005) Model evaluation, testing and selection. Handbook of cognition 422–436. doi: 10.4135/9781848608177.n19
[74]  Regier T (2003) Constraining computational models of cognition. In: Nadel L, editor, Encyclopedia of Cognitive Science, London: Macmillan. pp. 611–615.
[75]  Nardini M, Jones P, Bedford R, Braddick O (2008) Development of cue integration in human navigation. Current Biology 18: 689–93. doi: 10.1016/j.cub.2008.04.021
[76]  Shadlen M, Britten K, Newsome W, Movshon J (1996) A computational analysis of the relationship between neuronal and behavioral responses to visual motion. The Journal of Neuroscience 16: 1486–1510. doi: 10.1017/s095252380000715x
[77]  Stocker AA, Simoncelli EP (2006) Noise characteristics and prior expectations in human visual speed perception. Nature Neuroscience 9: 578–585. doi: 10.1038/nn1669
[78]  Canto C, Wouterlood F, Witter M (2008) What does the anatomical organization of the entorhinal cortex tell us? Neural plasticity 2008 doi: 10.1155/2008/381243
[79]  Kajiwara R, Wouterlood FG, Sah A, Boekel AJ, Baks-te Bulte LT, et al. (2008) Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1 - an anatomical study in the rat. Hippocampus 18: 266–280. doi: 10.1002/hipo.20385
[80]  Witter M (2011) Entorhinal cortex. Scholarpedia 6: 4380. doi: 10.4249/scholarpedia.4380
[81]  Burgess N, OKeefe J (2011) Models of place and grid cell firing and theta rhythmicity. Current opinion in neurobiology 21: 734–744. doi: 10.1016/j.conb.2011.07.002
[82]  Samu D, Eros P, Ujfalussy B, Kiss T (2009) Robust path integration in the entorhinal grid cell system with hippocampal feed-back. Biological Cybernetics 101: 19–34. doi: 10.1007/s00422-009-0311-z
[83]  Sreenivasan S, Fiete I (2011) Grid cells generate an analog error-correcting code for singularly precise neural computation. Nature neuroscience 14: 1330–1337. doi: 10.1038/nn.2901
[84]  Bonnevie T, Dunn B, Fyhn M, Hafting T, Derdikman D, et al. (2013) Grid cells require excitatory drive from the hippocampus. Nature neuroscience 16: 309–317. doi: 10.1038/nn.3311
[85]  Burgess N, Barry C, O'Keefe J (2007) An oscillatory interference model of grid cell firing. Hippocampus 17: 801–812. doi: 10.1002/hipo.20327
[86]  Hasselmo ME (2008) Grid cell mechanisms and function: contributions of entorhinal persistent spiking and phase resetting. Hippocampus 18: 1213–1229. doi: 10.1002/hipo.20512
[87]  Zilli Ea (2012) Models of grid cell spatial firing published 2005–2011. Frontiers in Neural Circuits 6: 1–17. doi: 10.3389/fncir.2012.00016
[88]  Engel TA, Schimansky-Geier L, Herz AV, Schreiber S, Erchova I (2008) Subthreshold membranepotential resonances shape spike-train patterns in the entorhinal cortex. Journal of neurophysiology 100: 1576–1589. doi: 10.1152/jn.01282.2007
[89]  Dickson CT, Magistretti J, Shalinsky M, Hamam B, Alonso A (2000) Oscillatory activity in entorhinal neurons and circuits: Mechanisms and function. Annals of the New York Academy of Sciences 911: 127–150. doi: 10.1111/j.1749-6632.2000.tb06723.x
[90]  Dickson CT, de Curtis M (2002) Enhancement of temporal and spatial synchronization of entorhinal gamma activity by phase reset. Hippocampus 12: 447–456. doi: 10.1002/hipo.10013
[91]  Deshmukh SS, Knierim JJ (2013) Inuence of local objects on hippocampal representations: Landmark vectors and memory. Hippocampus 23: 253–267. doi: 10.1002/hipo.22101
[92]  Azzalini A (2005) The Skew-normal Distribution and Related Multivariate Families*. Scandinavian Journal of Statistics 32: 159–188. doi: 10.1111/j.1467-9469.2005.00426.x
[93]  Mehta MR, Quirk MC, Wilson MA (2000) Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25: 707–715. doi: 10.1016/s0896-6273(00)81072-7
[94]  Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, et al. (2008) Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus 18: 1200–1212. doi: 10.1002/hipo.20504
[95]  Fox CW, Prescott TJ (2010) Hippocampus as unitary coherent particle filter. In: IJCNN. IEEE Press, pp. 1–8.
[96]  Joseph D, Monaco JJK, Zhang K (2011) Sensory feedback, error correction, and remapping in a multiple oscillator model of place cell activity. Frontiers in Computational Neuroscience 5. doi: 10.3389/fncom.2011.00039
[97]  Sheynikhovich D, Chavarriaga R, Strosslin T, Arleo A, Gerstner W (2009) Is there a geometric module for spatial orientation? Insights from a rodent navigation model. Psychological review 116: 540. doi: 10.1037/a0016170
[98]  Zemel R, Dayan P, Pouget A (1998) Probabilistic interpretation of population codes. Neural Computation 10: 403–430. doi: 10.1162/089976698300017818
[99]  Lee I, Yoganarasimha D, Rao G, Knierim JJ (2004) Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430: 456–459. doi: 10.1038/nature02739
[100]  Yang T, Shadlen MN (2007) Probabilistic reasoning by neurons. Nature 447: 1075–1080. doi: 10.1038/nature05852
[101]  Fiser J, Berkes P, Orbn G, Lengyel M (2010) Statistically optimal perception and learning: from behavior to neural representations. Trends in Cognitive Sciences 14: 119–130. doi: 10.1016/j.tics.2010.01.003
[102]  Hancock PA, Newell KM (1985) The movement speed-accuracy relationship in space-time. In: Motor Behavior, Springer. pp. 153–188.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133