全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential

DOI: 10.1371/journal.pone.0089783

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dengue is a mosquito-borne viral disease that occurs mainly in the tropics and subtropics but has a high potential to spread to new areas. Dengue infections are climate sensitive, so it is important to better understand how changing climate factors affect the potential for geographic spread and future dengue epidemics. Vectorial capacity (VC) describes a vector's propensity to transmit dengue taking into account human, virus, and vector interactions. VC is highly temperature dependent, but most dengue models only take mean temperature values into account. Recent evidence shows that diurnal temperature range (DTR) plays an important role in influencing the behavior of the primary dengue vector Aedes aegypti. In this study, we used relative VC to estimate dengue epidemic potential (DEP) based on the temperature and DTR dependence of the parameters of A. aegypti. We found a strong temperature dependence of DEP; it peaked at a mean temperature of 29.3°C when DTR was 0°C and at 20°C when DTR was 20°C. Increasing average temperatures up to 29°C led to an increased DEP, but temperatures above 29°C reduced DEP. In tropical areas where the mean temperatures are close to 29°C, a small DTR increased DEP while a large DTR reduced it. In cold to temperate or extremely hot climates where the mean temperatures are far from 29°C, increasing DTR was associated with increasing DEP. Incorporating these findings using historical and predicted temperature and DTR over a two hundred year period (1901–2099), we found an increasing trend of global DEP in temperate regions. Small increases in DEP were observed over the last 100 years and large increases are expected by the end of this century in temperate Northern Hemisphere regions using climate change projections. These findings illustrate the importance of including DTR when mapping DEP based on VC.

References

[1]  World Health Organization (WHO) (2012) Dengue and severe dengue – Fact sheet N°117. Available: http://www.who.int/mediacentre/factsheet?s/fs117/en/#. Accessed 03 December 2012.
[2]  Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, et al. (2013) The global distribution and burden of dengue. Nature 12060. doi: 10.1038/nature12060
[3]  Huang Z, Das A, Qiu Y, Tatem AJ (2012) Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool. Int J Health Geogr 11: 33. doi: 10.1186/1476-072x-11-33
[4]  Randolph SE, Rogers DJ (2010) The arrival, establishment and spread of exotic diseases: patterns and predictions. Nat Rev Microbiol 8: 361–371. doi: 10.1038/nrmicro2336
[5]  Reiter P (2010) Yellow fever and dengue: a threat to Europe? Euro Surveill 15: 19509.
[6]  Tatem AJ, Rogers DJ, Hay SI (2006) Global transport networks and infectious disease spread. Adv Parasitol 62: 293–343. doi: 10.1016/s0065-308x(05)62009-x
[7]  Wilder-Smith A, Gubler DJ (2008) Geographic expansion of dengue: the impact of international travel. Med Clin North Am 92: 1377–1390. doi: 10.1016/j.mcna.2008.07.002
[8]  Massad E, Coutinho F, Lopez L, Silva d (2011) Modeling the impact of global warming on vector-borne infections. Physics of Life Reviews 8: 169–199. doi: 10.1016/j.plrev.2011.01.001
[9]  Gething PW, Boeckel TPV, Smith DL, Guerra CA, Patil AP, et al. (2011) Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax Parasites & Vectors 4. doi: 10.1186/1756-3305-4-92
[10]  Patz JA, Martens WJ, Focks DA, Jetten TH (1998) Dengue fever epidemic potential as projected by general circulation models of global climate change. Environ Health Perspect 106: 147–153. doi: 10.1289/ehp.98106147
[11]  Lambrechts L, Paaijmans KP, Fansiri T, Carrington LB, Kramer LD, et al. (2011) Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti. Proc Natl Acad Sci U S A 108: 7460–7465. doi: 10.1073/pnas.1101377108
[12]  Carrington LB, Seifert SN, Willits NH, Lambrechts L, Scott TW (2013) Large diurnal temperature fluctuations negatively influence Aedes aegypti (Diptera: Culicidae) life-history traits. Journal of medical entomology. Proc Natl Acad Sci USA 50: 43–51. doi: 10.1603/me11242
[13]  Descloux E, Mangeas M, Menkes C, Lengaigne M, Leroy Aea (2012) Climate-Based Models for Understanding and Forecasting Dengue Epidemics. PLoS Negl Trop Dis 6: 1470. doi: 10.1371/journal.pntd.0001470
[14]  Paaijmans K, Blanford S, Bell A, Blanford J, Read A, et al. (2010) Influence of climate on malaria transmission depends on daily temperature variation PNAS. doi: 10.1073/pnas.1006422107
[15]  Raffel T, Romansic J, Halstead N, McMahon T, Venesky M, et al. (2012) Disease and thermal acclimation in a more variable and unpredictable climate. Nature Climate Change 3: 146–151. doi: 10.1038/nclimate1659
[16]  Gosling S, Mcgrego rG, Lowe J (2009) Climate change and heat-related mortality in six cities Part 2: climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int J Biometeorol 53: 31–51. doi: 10.1007/s00484-008-0189-9
[17]  Hales S, de Wet N, Maindonald J, Woodward A (2002) Potential effect of population and climate changes on global distribution of dengue fever: an empirical model. Lancet 360: 830–834. doi: 10.1016/s0140-6736(02)09964-6
[18]  Astrom C, Rocklov J, Hales S, Beguin A, Louis V, et al. (2013) Potential Distribution of Dengue Fever Under Scenarios of Climate Change and Economic Development. Ecohealth doi: 10.1007/s10393-012-0808-0
[19]  Reiter P, Lathrop S, Bunning M, Biggerstaff B, Singer D, et al. (2003) Texas lifestyle limits transmission of dengue virus. Emerg Infect Dis 9: 86–89. doi: 10.3201/eid0901.020220
[20]  Beebe N, Cooper R, Mottram P, Sweeney A (2009) Australia's dengue risk driven by human adaptation to climate change. PLoS Negl Trop Dis 3: 429. doi: 10.1371/journal.pntd.0000429
[21]  Garrett-Jones C (1964) Prognosis for Interruption of Malaria Transmission through Assessment of the Mosquito's Vectorial Capacity. Nature 204: 1173–1175. doi: 10.1038/2041173a0
[22]  Liu-Helmersson J (2012) Mathematical Modeling of Dengue -Temperature Effect on Vectorial Capacity. Master of Science Thesis. Available: http://www.phmed.umu.se/digitalAssets/10?4/104555_jing-helmersson.pdf: Ume? University; 2012. Accessed 11 December 2012.
[23]  Anderson R, May R (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford Oxford University Press.
[24]  Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, et al. (2000) Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol 37: 89–101. doi: 10.1603/0022-2585-37.1.89
[25]  Yang HM, Macoris ML, Galvani KC, Andrighetti MT, Wanderley DM (2009) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137: 1188–1202. doi: 10.1017/s0950268809002040
[26]  Focks DA, Daniels E, Haile DG, Keesling JE (1995) A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results. Am J Trop Med Hyg 53: 489–506.
[27]  ISI-MIP (2013) Inter-Sectoral Impact Model Intercomparison Project. Available: www.isi-mip.org. Accessed 07 April 2013.
[28]  Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, et al. (2013) The Inter-Sectoral Impact Model Intercomparison Project (ISI–MIP): Project framework. Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1312330110
[29]  Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F (2013) A trend-preserving bias correction – the ISI-MIP approach. Earth Syst Dynam Discuss 4: 49–92. doi: 10.5194/esdd-4-49-2013
[30]  Marí R, Peydró RJ (2012) Re-Emergence of Malaria and Dengue in Europe, Current Topics in Tropical Medicine; Rodriguez-Morales A, editor: InTech.
[31]  European Centre for Disease Prevention and Control (ECDC) (2009) Technical Report - Development of Aedes albopictus risk maps Stockholm: ECDC.
[32]  Sousa C, Clairouin M, Seixas G, Viveiros B, Novo M, et al. (2012) Ongoing outbreak of dengue type 1 in the Autonomous Region of Madeira, Portugal: preliminary report. Euro Surveill 17: 20333.
[33]  European Centre for Disease Prevention and Control (2012) Epidemiological update: Outbreak of dengue in Madeira, Portugal 14 Feb 2013. Stockholm: ECDC.
[34]  Brière J, Pracros P, Roux AL, Pierre J (1999) A novel rate model of temperature dependent development for arthropods. Environ Entomol 28: 22–29.
[35]  Watts D, Burke D, Harrison B, Whitmire R, Nisalak A (1987) Effect of temperature on the vector efficiency of Aedes aegypti for dengue 2 virus. Am J Trop Med Hyg 36: 143–152.
[36]  McLean D, Clarke A, Coleman J, Montalbetti C, Skidmore A, et al. (1974 Feb) Vector capability of Aedes aegypti mosquitoes for California encephalitis and dengue viruses at various temperatures. Can J Microbiol 20: 255–262. doi: 10.1139/m74-040
[37]  Jones P, Harris I (2008) CRU Time Series (TS) high resolution gridded datasets. University of East Anglia Climatic Research Unit (CRU). NCAS British Atmospheric Data Centre
[38]  Goosse H, Barriat P, Lefebvre W, Loutre M, Zunz V (2013) Chapter 6.1.3 Representative concentration pathways (RCPs). Introduction to climate dynamics and climate modeling Available: http://www.elic.ucl.ac.be/textbook.
[39]  Taylor KE, Stouffer RJ, Meehl GA (2011) An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society 93: 485–498. doi: 10.1175/bams-d-11-00094.1
[40]  CMIP5 (2013) Coupled Model Intercomparison Project Phase 5. WCRP - World Climate Research Programme. Available: http://cmip-pcmdi.llnl.gov/cmip5/. Accessed 15 April 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133