Electroluminescence is reported from dilute nitride InAsSbN/InAs multiquantum well light-emitting diodes grown using nitrogen plasma source molecular beam epitaxy. The diodes exhibited bright emission in the midinfrared peaking at 3.56?μm at room temperature. Emission occurred from a type I transition from electrons in the InAsSbN to confined heavy and light hole states in the QW. Analysis of the temperature- and current-dependent electroluminescence shows that thermally activated hole leakage and Auger recombination are the performance limiting factors in these devices. 1. Introduction There is increasing interest in the fabrication of mid-infrared optoelectronic devices for a range of applications including environmental pollution monitoring, remote sensing (LIDAR), infrared counter-measures, and free space optical communications. A number of different semiconductor materials and devices are currently being investigated including InSb/InAs quantum dots [1], bulk GaInAsSbP pentanary [2] and AlInSb alloys [3], InGaAsSb/AlGaInAsSb quantum wells (QWs) [4], and InAs/GaSb superlattices [5]. Recently we reported on bright room temperature electroluminescence from type II InAsSb/InAs multiquantum well (MQW) light-emitting diodes (LEDs) which produced a quasi-cw power of 12?μW corresponding to an internal quantum efficiency of 2.2% at a peak wavelength near 3.7?μm [6]. One way to improve the performance is to introduce nitrogen into the well. The introduction of a small amount of nitrogen reduces the bandgap without excess strain and can change the band alignment from type II to type I increasing the electron confinement and e-h wavefunction overlap. Furthermore dilute nitrides have the potential to reduce Auger recombination [7] and intervalence band absorption. To date there have been no reports of LEDs based on dilute nitride material in the mid-infrared spectral range (λ > 3?μm) due to the difficulty in growing epitaxial material of sufficient quality. Our previous work has concentrated on the development and optimisation of the growth of InAsSbN and from which photoluminescence (PL) was obtained up to 250?K from InAsSbN/InAs MQWs [8, 9]. It was found that the surfactant effect of Sb enhances the crystalline quality and PL intensity. Also the possibility to adjust the Sb and N contents in the material enables one to grow the material lattice matched to InAs or to tailor the strain in the QW. In this work we report bright room temperature electroluminescence at 3.56?μm from InAsSbN/InAs MQW LEDs and investigate the temperature and current dependencies of
References
[1]
P. J. Carrington, V. A. Solov'ev, Q. Zhuang, A. Krier, and S. V. Ivanov, “Room temperature midinfrared electroluminescence from InSb/InAs quantum dot light emitting diodes,” Applied Physics Letters, vol. 93, no. 9, Article ID 091101, 2008.
[2]
N. B. Cook and A. Krier, “Midinfrared electroluminescence from pentanary-quaternary heterojunction light-emitting diodes,” Applied Physics Letters, vol. 95, no. 2, Article ID 021110, 2009.
[3]
B. I. Mirza, G. R. Nash, S. J. Smith et al., “Recombination processes in midinfrared light-emitting diodes,” Journal of Applied Physics, vol. 104, no. 6, Article ID 063113, 2008.
[4]
S. Suchalkin, S. Jung, G. Kipshidze et al., “GaSb based light emitting diodes with strained InGaAsSb type i quantum well active regions,” Applied Physics Letters, vol. 93, no. 8, Article ID 081107, 2008.
[5]
E. J. Koerperick, J. T. Olesberg, T. F. Boggess et al., “InAs/GaSb cascaded active region superlattice light emitting diodes for operation at 3.8 μm,” Applied Physics Letters, vol. 92, no. 12, Article ID 121106, 2008.
[6]
P. J. Carrington, Q. Zhuang, M. Yin, and A. Krier, “Temperature dependence of mid-infrared electroluminescence in type II InAsSb/InAs multi-quantum well light-emitting diodes,” Semiconductor Science and Technology, vol. 24, no. 7, Article ID 075001, 2009.
[7]
B. N. Murdin, M. Kamal-Saadi, A. Lindsay et al., “Auger recombination in long-wavelength infrared alloys,” Applied Physics Letters, vol. 78, no. 11, pp. 1568–1570, 2001.
[8]
Q. Zhuang, A. Godenir, A. Krier, G. Tsai, and H. H. Lin, “Molecular beam epitaxial growth of InAsN:Sb for midinfrared Optoelectronics,” Applied Physics Letters, vol. 93, no. 12, Article ID 121903, 2008.
[9]
M. de La Mare, P. J. Carrington, R. Wheatley et al., “Photoluminescence of multi-quantum wells in the mid-infrared spectral range,” Journal of Physics D, vol. 43, no. 34, Article ID 345103, 2010.
[10]
W. Y. Uen, S. M. Liao, C. T. Lin, and C. H. Wu, “Low-temperature electrical characterizations of photodiodes fabricated by liquid-phase epitaxy,” Solid-State Electronics, vol. 46, no. 9, pp. 1405–1409, 2002.
[11]
K. J. Cheetham, P. J. Carrington, N. B. Cook, and A. Krier, “Low bandgap GaInAsSbP pentanary thermophotovoltaic diodes,” Solar Energy Materials and Solar Cells, vol. 95, no. 2, pp. 534–537, 2011.
[12]
N. V. Zotova, N. D. Il'inskaya, S. A. Karandashev, B. A. Matveev, M. A. Remennyi, and N. M. Stus', “Flip-chip LEDs with deep mesa emitting at 4.2?μm,” Semiconductors, vol. 40, no. 6, pp. 697–703, 2006.
[13]
J. Hoffmann, T. Lehnert, D. Hoffmann, and H. Fouckhardt, “Advantages and disadvantages of sulfur passivation of InAs/GaSb superlattice waveguide photodiodes,” Semiconductor Science and Technology, vol. 24, no. 6, article 065008, 2009.
[14]
Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica, vol. 34, no. 1, pp. 149–154, 1967.
[15]
Z. M. Fang, K. Y. Ma, D. H. Jaw, R. M. Cohen, and G. B. Stringfellow, “Photoluminescence of InSb, InAs, and InAsSb grown by organometallic vapor phase epitaxy,” Journal of Applied Physics, vol. 67, no. 11, pp. 7034–7039, 1990.
[16]
A. M. R Godenir, Novel dilute nitride semiconductor materials for mid infrared applications, Ph.D. thesis, Lancaster University, Lancaster, UK, 2008.
[17]
F. I. Lai, S. Y. Kuo, J. S. Wang et al., “Temperature-dependent optical properties of single quantum well with high nitrogen content for 1.55? m application grown by molecular beam epitaxy,” Journal of Crystal Growth, vol. 291, no. 1, pp. 27–33, 2006.
[18]
G. R. Nash, M. K. Haigh, H. R. Hardaway et al., “InSbAlInSb quantum-well light-emitting diodes,” Applied Physics Letters, vol. 88, no. 5, Article ID 051107, pp. 1–3, 2006.
[19]
S. J. Sweeney, A. F. Phillips, A. R. Adams, E. P. O'Reilly, and P. J. A. Thijs, “The effect of temperature dependent processes on the performance of 1.5-μm compressively strained InGaAs(P) MQW semiconductor diode lasers,” IEEE Photonics Technology Letters, vol. 10, no. 8, pp. 1076–1078, 1998.