Enteroendocrine cells are solitary epithelial cells scattered throughout the gastrointestinal tract and produce various types of hormones, constituting one of the largest endocrine systems in the body. The study of these rare epithelial cells has been hampered by the difficulty in isolating them because of the lack of specific cell surface markers. Here, we report that enteroendocrine cells selectively express a tight junction membrane protein, claudin-4 (Cld4), and are efficiently isolated with the use of an antibody specific for the Cld4 extracellular domain and flow cytometry. Sorted Cld4+ epithelial cells in the small intestine exclusively expressed a chromogranin A gene (Chga) and other enteroendocrine cell–related genes (Ffar1, Ffar4, Gpr119), and the population was divided into two subpopulations based on the activity of binding to Ulex europaeus agglutinin-1 (UEA-1). A Cld4+UEA-1? cell population almost exclusively expressed glucose-dependent insulinotropic polypeptide gene (Gip), thus representing K cells, whereas a Cld4+UEA-1+ cell population expressed other gut hormone genes, including glucagon-like peptide 1 (Gcg), pancreatic polypeptide–like peptide with N-terminal tyrosine amide (Pyy), cholecystokinin (Cck), secretin (Sct), and tryptophan hydroxylase 1 (Tph1). In addition, we found that orally administered luminal antigens were taken up by the solitary Cld4+ cells in the small intestinal villi, raising the possibility that enteroendocrine cells might also play a role in initiation of mucosal immunity. Our results provide a useful tool for the cellular and functional characterization of enteroendocrine cells.
References
[1]
Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, et al. (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449: 1003–1007. doi: 10.1038/nature06196
[2]
Barker N, Clevers H (2010) Leucine-rich repeat-containing G-protein-coupled receptors as markers of adult stem cells. Gastroenterology 138: 1681–1696. doi: 10.1053/j.gastro.2010.03.002
[3]
Gerbe F, Legraverend C, Jay P (2012) The intestinal epithelium tuft cells: specification and function. Cell Mol Life Sci 69: 2907–2917. doi: 10.1007/s00018-012-0984-7
[4]
Rindi G, Leiter AB, Kopin AS, Bordi C, Solcia E (2004) The "normal" endocrine cell of the gut: changing concepts and new evidences. Ann N Y Acad Sci 1014: 1–12.
[5]
Buchan AM, Polak JM, Capella C, Solcia E, Pearse AG (1978) Electronimmunocytochemical evidence for the K cell localization of gastric inhibitory polypeptide (GIP) in man. Histochemistry 56: 37–44. doi: 10.1007/bf00492251
[6]
Eissele R, Goke R, Willemer S, Harthus HP, Vermeer H, et al. (1992) Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 22: 283–291. doi: 10.1111/j.1365-2362.1992.tb01464.x
[7]
Elrick H, Stimmler L, Hlad CJ Jr, Arai Y (1964) Plasma insulin response to oral and intravenous glucose administration. J Clin Endocrinol Metab 24: 1076–1082. doi: 10.1210/jcem-24-10-1076
[8]
McIntyre N, Holdsworth CD, Turner DS (1964) New Interpretation of Oral Glucose Tolerance. Lancet 2: 20–21. doi: 10.1016/s0140-6736(64)90011-x
[9]
Dupre J, Ross SA, Watson D, Brown JC (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37: 826–828. doi: 10.1210/jcem-37-5-826
[10]
Kreymann B, Williams G, Ghatei MA, Bloom SR (1987) Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2: 1300–1304. doi: 10.1016/s0140-6736(87)91194-9
[11]
Lovshin JA, Drucker DJ (2009) Incretin-based therapies for type 2 diabetes mellitus. Nat Rev Endocrinol 5: 262–269. doi: 10.1038/nrendo.2009.48
[12]
Rehfeld JF (2004) A centenary of gastrointestinal endocrinology. Horm Metab Res 36: 735–741. doi: 10.1055/s-2004-826154
[13]
Schonhoff SE, Giel-Moloney M, Leiter AB (2004) Minireview: Development and differentiation of gut endocrine cells. Endocrinology 145: 2639–2644. doi: 10.1210/en.2004-0051
[14]
May CL, Kaestner KH (2010) Gut endocrine cell development. Mol Cell Endocrinol 323: 70–75. doi: 10.1016/j.mce.2009.12.009
[15]
Sato M, Yonezawa S, Uehara H, Arita Y, Sato E, et al. (1986) Differential distribution of receptors for two fucose-binding lectins in embryos and adult tissues of the mouse. Differentiation 30: 211–219. doi: 10.1111/j.1432-0436.1986.tb00783.x
[16]
Reimann F, Habib AM, Tolhurst G, Parker HE, Rogers GJ, et al. (2008) Glucose sensing in L cells: a primary cell study. Cell Metab 8: 532–539. doi: 10.1016/j.cmet.2008.11.002
[17]
Parker HE, Habib AM, Rogers GJ, Gribble FM, Reimann F (2009) Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52: 289–298. doi: 10.1007/s00125-008-1202-x
[18]
Tsukita S, Furuse M, Itoh M (2001) Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol 2: 285–293. doi: 10.1038/35067088
[19]
Furuse M (2010) Molecular basis of the core structure of tight junctions. Cold Spring Harb Perspect Biol 2: a002907. doi: 10.1101/cshperspect.a002907
[20]
Angelow S, Ahlstrom R, Yu AS (2008) Biology of claudins. Am J Physiol Renal Physiol 295: F867–876. doi: 10.1152/ajprenal.90264.2008
[21]
Krug SM, Gunzel D, Conrad MP, Lee IF, Amasheh S, et al. (2012) Charge-selective claudin channels. Ann N Y Acad Sci 1257: 20–28. doi: 10.1111/j.1749-6632.2012.06555.x
[22]
Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1: a002584. doi: 10.1101/cshperspect.a002584
[23]
Swisshelm K, Macek R, Kubbies M (2005) Role of claudins in tumorigenesis. Adv Drug Deliv Rev 57: 919–928. doi: 10.1016/j.addr.2005.01.006
[24]
Tamura A, Kitano Y, Hata M, Katsuno T, Moriwaki K, et al. (2008) Megaintestine in claudin-15-deficient mice. Gastroenterology 134: 523–534. doi: 10.1053/j.gastro.2007.11.040
[25]
Tsukita S, Yamazaki Y, Katsuno T, Tamura A (2008) Tight junction-based epithelial microenvironment and cell proliferation. Oncogene 27: 6930–6938. doi: 10.1038/onc.2008.344
[26]
Buchert M, Papin M, Bonnans C, Darido C, Raye WS, et al. (2010) Symplekin promotes tumorigenicity by up-regulating claudin-2 expression. Proc Natl Acad Sci U S A 107: 2628–2633. doi: 10.1073/pnas.0903747107
[27]
Dhawan P, Ahmad R, Chaturvedi R, Smith JJ, Midha R, et al. (2011) Claudin-2 expression increases tumorigenicity of colon cancer cells: role of epidermal growth factor receptor activation. Oncogene 30: 3234–3247. doi: 10.1038/onc.2011.43
[28]
Kawai Y, Hamazaki Y, Fujita H, Fujita A, Sato T, et al. (2011) Claudin-4 induction by E-protein activity in later stages of CD4/8 double-positive thymocytes to increase positive selection efficiency. Proc Natl Acad Sci U S A 108: 4075–4080. doi: 10.1073/pnas.1014178108
[29]
Fujita H, Hamazaki Y, Noda Y, Oshima M, Minato N (2012) Claudin-4 deficiency results in urothelial hyperplasia and lethal hydronephrosis. PLoS One 7: e52272. doi: 10.1371/journal.pone.0052272
[30]
Hamazaki Y, Fujita H, Kobayashi T, Choi Y, Scott HS, et al. (2007) Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 8: 304–311. doi: 10.1038/ni1438
[31]
Tamagawa H, Takahashi I, Furuse M, Yoshitake-Kitano Y, Tsukita S, et al. (2003) Characteristics of claudin expression in follicle-associated epithelium of Peyer's patches: preferential localization of claudin-4 at the apex of the dome region. Lab Invest 83: 1045–1053. doi: 10.1097/01.lab.0000078741.55670.6e
[32]
Lo D, Tynan W, Dickerson J, Scharf M, Cooper J, et al. (2004) Cell culture modeling of specialized tissue: identification of genes expressed specifically by follicle-associated epithelium of Peyer's patch by expression profiling of Caco-2/Raji co-cultures. Int Immunol 16: 91–99. doi: 10.1093/intimm/dxh011
[33]
Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology 120: 411–422. doi: 10.1053/gast.2001.21736
[34]
Uchida H, Kondoh M, Hanada T, Takahashi A, Hamakubo T, et al. (2010) A claudin-4 modulator enhances the mucosal absorption of a biologically active peptide. Biochem Pharmacol 79: 1437–1444. doi: 10.1016/j.bcp.2010.01.010
[35]
Kondoh M, Yoshida T, Kakutani H, Yagi K (2008) Targeting tight junction proteins-significance for drug development. Drug Discov Today 13: 180–186. doi: 10.1016/j.drudis.2007.11.005
[36]
Rajapaksa TE, Stover-Hamer M, Fernandez X, Eckelhoefer HA, Lo DD (2010) Claudin 4-targeted protein incorporated into PLGA nanoparticles can mediate M cell targeted delivery. J Control Release 142: 196–205. doi: 10.1016/j.jconrel.2009.10.033
[37]
Edfalk S, Steneberg P, Edlund H (2008) Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes 57: 2280–2287. doi: 10.2337/db08-0307
[38]
Chu ZL, Carroll C, Alfonso J, Gutierrez V, He H, et al. (2008) A role for intestinal endocrine cell-expressed G protein-coupled receptor 119 in glycemic control by enhancing glucagon-like Peptide-1 and glucose-dependent insulinotropic Peptide release. Endocrinology 149: 2038–2047. doi: 10.1210/en.2007-0966
[39]
Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, et al. (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11: 90–94. doi: 10.1038/nm1168
[40]
Mortensen K, Christensen LL, Holst JJ, Orskov C (2003) GLP-1 and GIP are colocalized in a subset of endocrine cells in the small intestine. Regul Pept 114: 189–196. doi: 10.1016/s0167-0115(03)00125-3
[41]
Habib AM, Richards P, Cairns LS, Rogers GJ, Bannon CA, et al. (2012) Overlap of endocrine hormone expression in the mouse intestine revealed by transcriptional profiling and flow cytometry. Endocrinology 153: 3054–3065. doi: 10.1210/en.2011-2170
[42]
McDole JR, Wheeler LW, McDonald KG, Wang B, Konjufca V, et al. (2012) Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483: 345–349. doi: 10.1038/nature10863
[43]
Owen RL, Jones AL (1974) Epithelial cell specialization within human Peyer's patches: an ultrastructural study of intestinal lymphoid follicles. Gastroenterology 66: 189–203.
[44]
Neutra MR, Frey A, Kraehenbuhl JP (1996) Epithelial M cells: gateways for mucosal infection and immunization. Cell 86: 345–348. doi: 10.1016/s0092-8674(00)80106-3
[45]
Madara JL, Trier JS (1982) Structure and permeability of goblet cell tight junctions in rat small intestine. J Membr Biol 66: 145–157. doi: 10.1007/bf01868490
[46]
Hamazaki Y, Itoh M, Sasaki H, Furuse M, Tsukita S (2002) Multi-PDZ domain protein 1 (MUPP1) is concentrated at tight junctions through its possible interaction with claudin-1 and junctional adhesion molecule. J Biol Chem 277: 455–461. doi: 10.1074/jbc.m109005200
[47]
Nochi T, Yuki Y, Terahara K, Hino A, Kunisawa J, et al. (2004) Biological role of Ep-CAM in the physical interaction between epithelial cells and lymphocytes in intestinal epithelium. Clin Immunol 113: 326–339. doi: 10.1016/j.clim.2004.08.013
[48]
Terahara K, Yoshida M, Igarashi O, Nochi T, Pontes GS, et al. (2008) Comprehensive gene expression profiling of Peyer's patch M cells, villous M-like cells, and intestinal epithelial cells. J Immunol 180: 7840–7846. doi: 10.4049/jimmunol.180.12.7840