全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

β-Agonists Selectively Modulate Proinflammatory Gene Expression in Skeletal Muscle Cells via Non-Canonical Nuclear Crosstalk Mechanisms

DOI: 10.1371/journal.pone.0090649

Full-Text   Cite this paper   Add to My Lib

Abstract:

The proinflammatory cytokine Tumour Necrosis Factor (TNF)-α is implicated in a variety of skeletal muscle pathologies. Here, we have investigated how in vitro cotreatment of skeletal muscle C2C12 cells with β-agonists modulates the TNF-α-induced inflammatory program. We observed that C2C12 myotubes express functional TNF receptor 1 (TNF-R1) and β2-adrenoreceptors (β2-ARs). TNF-α activated the canonical Nuclear Factor-κB (NF-κB) pathway and Mitogen-Activated Protein Kinases (MAPKs), culminating in potent induction of NF-κB-dependent proinflammatory genes. Cotreatment with the β-agonist isoproterenol potentiated the expression of inflammatory mediators, including Interleukin-6 (IL-6) and several chemokines. The enhanced production of chemotactic factors upon TNF-α/isoproterenol cotreatment was also suggested by the results from migrational analysis. Whereas we could not explain our observations by cytoplasmic crosstalk, we found that TNF-R1-and β2-AR-induced signalling cascades cooperate in the nucleus. Using the IL-6 promoter as a model, we demonstrated that TNF-α/isoproterenol cotreatment provoked phosphorylation of histone H3 at serine 10, concomitant with enhanced promoter accessibility and recruitment of the NF-κB p65 subunit, cAMP-response element-binding protein (CREB), CREB-binding protein (CBP) and RNA polymerase II. In summary, we show that β-agonists potentiate TNF-α action, via nuclear crosstalk, that promotes chromatin relaxation at selected gene promoters. Our data warrant further study into the mode of action of β-agonists and urge for caution in their use as therapeutic agents for muscular disorders.

References

[1]  Peterson JM, Guttridge DC (2008) Skeletal muscle diseases, inflammation, and NF-kappaB signaling: insights and opportunities for therapeutic intervention. Int Rev Immunol 27: 375–387. doi: 10.1080/08830180802302389
[2]  Li YP, Reid MB (2001) Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Curr Opin Rheumatol 13: 483–487. doi: 10.1097/00002281-200111000-00005
[3]  Dempsey PW, Doyle SE, He JQ, Cheng G (2003) The signaling adaptors and pathways activated by TNF superfamily. Cytokine Growth Factor Rev 14: 193–209. doi: 10.1016/s1359-6101(03)00021-2
[4]  Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26: 203–234. doi: 10.1101/gad.183434.111
[5]  Mourkioti F, Rosenthal N (2008) NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med (Berl) 86: 747–759. doi: 10.1007/s00109-008-0308-4
[6]  Lynch GS, Ryall JG (2008) Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease. Physiol Rev 88: 729–767. doi: 10.1152/physrev.00028.2007
[7]  Beitzel F, Gregorevic P, Ryall JG, Plant DR, Sillence MN, et al. (2004) Beta2-adrenoceptor agonist fenoterol enhances functional repair of regenerating rat skeletal muscle after injury. J Appl Physiol 96: 1385–1392. doi: 10.1152/japplphysiol.01081.2003
[8]  Ryall JG, Gregorevic P, Plant DR, Sillence MN, Lynch GS (2002) Beta 2-agonist fenoterol has greater effects on contractile function of rat skeletal muscles than clenbuterol. Am J Physiol Regul Integr Comp Physiol 283: R1386–1394.
[9]  Hinkle RT, Hodge KM, Cody DB, Sheldon RJ, Kobilka BK, et al. (2002) Skeletal muscle hypertrophy and anti-atrophy effects of clenbuterol are mediated by the beta2-adrenergic receptor. Muscle Nerve 25: 729–734. doi: 10.1002/mus.10092
[10]  Farmer P, Pugin J (2000) beta-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol 279: L675–682.
[11]  Ye RD (2000) beta-Adrenergic agonists regulate NF-kappaB activation through multiple mechanisms. Am J Physiol Lung Cell Mol Physiol 279: L615–617.
[12]  Gavrilyuk V, Dello Russo C, Heneka MT, Pelligrino D, Weinberg G, et al. (2002) Norepinephrine increases I kappa B alpha expression in astrocytes. J Biol Chem 277: 29662–29668. doi: 10.1074/jbc.m203256200
[13]  Frost RA, Nystrom GJ, Lang CH (2004) Epinephrine stimulates IL-6 expression in skeletal muscle and C2C12 myoblasts: role of c-Jun NH2-terminal kinase and histone deacetylase activity. Am J Physiol Endocrinol Metab 286: E809–817. doi: 10.1152/ajpendo.00560.2003
[14]  Steensberg A, Toft AD, Schjerling P, Halkjaer-Kristensen J, Pedersen BK (2001) Plasma interleukin-6 during strenuous exercise: role of epinephrine. Am J Physiol Cell Physiol 281: C1001–1004.
[15]  Bhatnagar S, Panguluri SK, Gupta SK, Dahiya S, Lundy RF, et al. (2010) Tumor necrosis factor-alpha regulates distinct molecular pathways and gene networks in cultured skeletal muscle cells. PLoS One 5: e13262. doi: 10.1371/journal.pone.0013262
[16]  Spurlock DM, McDaneld TG, McIntyre LM (2006) Changes in skeletal muscle gene expression following clenbuterol administration. BMC Genomics 7: 320.
[17]  Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, et al. (1998) p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappaB p65 transactivation mediated by tumor necrosis factor. J Biol Chem 273: 3285–3290. doi: 10.1074/jbc.273.6.3285
[18]  Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270: 725–727. doi: 10.1038/270725a0
[19]  Blau HM, Chiu CP, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32: 1171–1180. doi: 10.1016/0092-8674(83)90300-8
[20]  Terrillon S, Bouvier M (2004) Roles of G-protein-coupled receptor dimerization. EMBO Rep 5: 30–34. doi: 10.1038/sj.embor.7400052
[21]  Bockaert J, Pin JP (1999) Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J 18: 1723–1729. doi: 10.1093/emboj/18.7.1723
[22]  Yoon JH, Song P, Jang JH, Kim DK, Choi S, et al. (2011) Proteomic analysis of tumor necrosis factor-alpha (TNF-alpha)-induced L6 myotube secretome reveals novel TNF-alpha-dependent myokines in diabetic skeletal muscle. J Proteome Res 10: 5315–5325. doi: 10.1021/pr200573b
[23]  Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8: 457–465. doi: 10.1038/nrendo.2012.49
[24]  Porter JD, Guo W, Merriam AP, Khanna S, Cheng G, et al. (2003) Persistent over-expression of specific CC class chemokines correlates with macrophage and T-cell recruitment in mdx skeletal muscle. Neuromuscul Disord 13: 223–235. doi: 10.1016/s0960-8966(02)00242-0
[25]  Vermeulen L, De Wilde G, Van Damme P, Vanden Berghe W, Haegeman G (2003) Transcriptional activation of the NF-kappaB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK1). EMBO J 22: 1313–1324. doi: 10.1093/emboj/cdg139
[26]  Spooren A, Kooijman R, Lintermans B, Van Craenenbroeck K, Vermeulen L, et al. (2010) Cooperation of NFkappaB and CREB to induce synergistic IL-6 expression in astrocytes. Cell Signal 22: 871–881. doi: 10.1016/j.cellsig.2010.01.018
[27]  Kouzarides T (2007) Chromatin modifications and their function. Cell 128: 693–705. doi: 10.1016/j.cell.2007.02.005
[28]  Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, et al. (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107: 21931–21936. doi: 10.1073/pnas.1016071107
[29]  Tie F, Banerjee R, Stratton CA, Prasad-Sinha J, Stepanik V, et al. (2009) CBP-mediated acetylation of histone H3 lysine 27 antagonizes Drosophila Polycomb silencing. Development 136: 3131–3141. doi: 10.1242/dev.037127
[30]  Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, et al. (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40: 897–903. doi: 10.1038/ng.154
[31]  Salvador LM, Park Y, Cottom J, Maizels ET, Jones JC, et al. (2001) Follicle-stimulating hormone stimulates protein kinase A-mediated histone H3 phosphorylation and acetylation leading to select gene activation in ovarian granulosa cells. J Biol Chem 276: 40146–40155.
[32]  Drobic B, Perez-Cadahia B, Yu J, Kung SK, Davie JR (2010) Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 38: 3196–3208. doi: 10.1093/nar/gkq030
[33]  Nedachi T, Hatakeyama H, Kono T, Sato M, Kanzaki M (2009) Characterization of contraction-inducible CXC chemokines and their roles in C2C12 myocytes. Am J Physiol Endocrinol Metab 297: E866–878. doi: 10.1152/ajpendo.00104.2009
[34]  Zador E, Mendler L, Takacs V, de Bleecker J, Wuytack F (2001) Regenerating soleus and extensor digitorum longus muscles of the rat show elevated levels of TNF-alpha and its receptors, TNFR-60 and TNFR-80. Muscle Nerve 24: 1058–1067. doi: 10.1002/mus.1110
[35]  Guttridge DC, Albanese C, Reuther JY, Pestell RG, Baldwin AS Jr (1999) NF-kappaB controls cell growth and differentiation through transcriptional regulation of cyclin D1. Mol Cell Biol 19: 5785–5799.
[36]  Wertz IE, Dixit VM (2008) Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev 19: 313–324. doi: 10.1016/j.cytogfr.2008.04.014
[37]  De Paepe B, Creus KK, De Bleecker JL (2007) Chemokine profile of different inflammatory myopathies reflects humoral versus cytotoxic immune responses. Ann N Y Acad Sci 1109: 441–453. doi: 10.1196/annals.1398.050
[38]  Witherow DS, Garrison TR, Miller WE, Lefkowitz RJ (2004) beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc Natl Acad Sci U S A 101: 8603–8607. doi: 10.1073/pnas.0402851101
[39]  Siggers T, Chang AB, Teixeira A, Wong D, Williams KJ, et al. (2012) Principles of dimer-specific gene regulation revealed by a comprehensive characterization of NF-kappaB family DNA binding. Nat Immunol 13: 95–102. doi: 10.1038/ni.2151
[40]  Smale ST (2012) Dimer-specific regulatory mechanisms within the NF-kappaB family of transcription factors. Immunol Rev 246: 193–204. doi: 10.1111/j.1600-065x.2011.01091.x
[41]  Leung TH, Hoffmann A, Baltimore D (2004) One nucleotide in a kappaB site can determine cofactor specificity for NF-kappaB dimers. Cell 118: 453–464. doi: 10.1016/j.cell.2004.08.007
[42]  Zhong H, Voll RE, Ghosh S (1998) Phosphorylation of NF-kappa B p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell 1: 661–671. doi: 10.1016/s1097-2765(00)80066-0
[43]  Vermeulen L, De Wilde G, Notebaert S, Vanden Berghe W, Haegeman G (2002) Regulation of the transcriptional activity of the nuclear factor-kappaB p65 subunit. Biochem Pharmacol 64: 963–970. doi: 10.1016/s0006-2952(02)01161-9
[44]  Spooren A, Kolmus K, Vermeulen L, Van Wesemael K, Haegeman G, et al. (2010) Hunting for serine 276-phosphorylated p65. J Biomed Biotechnol 2010: 275892. doi: 10.1155/2010/275892
[45]  Kaur M, Holden NS, Wilson SM, Sukkar MB, Chung KF, et al. (2008) Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A. Am J Physiol Lung Cell Mol Physiol. 295: L505–514. doi: 10.1152/ajplung.00046.2008
[46]  Baouz S, Giron-Michel J, Azzarone B, Giuliani M, Cagnoni F, et al. (2005) Lung myofibroblasts as targets of salmeterol and fluticasone propionate: inhibition of alpha-SMA and NF-kappaB. Int Immunol 17: 1473–1481. doi: 10.1093/intimm/dxh325
[47]  Smale ST (2011) Hierarchies of NF-kappaB target-gene regulation. Nat Immunol 12: 689–694. doi: 10.1038/ni.2070
[48]  Monroy MA, Ruhl DD, Xu X, Granner DK, Yaciuk P, et al. (2001) Regulation of cAMP-responsive element-binding protein-mediated transcription by the SNF2/SWI-related protein, SRCAP. J Biol Chem 276: 40721–40726. doi: 10.1074/jbc.m103615200
[49]  Shimada M, Nakadai T, Fukuda A, Hisatake K (2010) cAMP-response element-binding protein (CREB) controls MSK1-mediated phosphorylation of histone H3 at the c-fos promoter in vitro. J Biol Chem 285: 9390–9401. doi: 10.1074/jbc.m109.057745
[50]  Mayr BM, Canettieri G, Montminy MR (2001) Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via CREB. Proc Natl Acad Sci U S A 98: 10936–10941. doi: 10.1073/pnas.191152098
[51]  Avni D, Ernst O, Philosoph A, Zor T (2010) Role of CREB in modulation of TNFalpha and IL-10 expression in LPS-stimulated RAW264.7 macrophages. Mol Immunol 47: 1396–1403. doi: 10.1016/j.molimm.2010.02.015
[52]  Wang Y, Inoue H, Ravnskjaer K, Viste K, Miller N, et al. (2010) Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc Natl Acad Sci U S A 107: 3087–3092. doi: 10.1073/pnas.0914897107
[53]  Riccio A, Alvania RS, Lonze BE, Ramanan N, Kim T, et al. (2006) A nitric oxide signaling pathway controls CREB-mediated gene expression in neurons. Mol Cell 21: 283–294. doi: 10.1016/j.molcel.2005.12.006
[54]  Cha-Molstad H, Keller DM, Yochum GS, Impey S, Goodman RH (2004) Cell-type-specific binding of the transcription factor CREB to the cAMP-response element. Proc Natl Acad Sci U S A 101: 13572–13577. doi: 10.1073/pnas.0405587101
[55]  Schreiber SL, Bernstein BE (2002) Signaling network model of chromatin. Cell 111: 771–778. doi: 10.1016/s0092-8674(02)01196-0
[56]  Fischle W, Wang Y, Allis CD (2003) Histone and chromatin cross-talk. Curr Opin Cell Biol 15: 172–183. doi: 10.1016/s0955-0674(03)00013-9
[57]  McManus KJ, Hendzel MJ (2001) CBP, a transcriptional coactivator and acetyltransferase. Biochem Cell Biol 79: 253–266. doi: 10.1139/o01-076
[58]  Holmqvist PH, Mannervik M (2013) Genomic occupancy of the transcriptional co-activators p300 and CBP. Transcription 4: 18–23. doi: 10.4161/trns.22601
[59]  Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, et al. (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5: 905–915. doi: 10.1016/s1097-2765(00)80256-7
[60]  Clayton AL, Mahadevan LC (2003) MAP kinase-mediated phosphoacetylation of histone H3 and inducible gene regulation. FEBS Lett 546: 51–58. doi: 10.1016/s0014-5793(03)00451-4
[61]  Lu Q, Hutchins AE, Doyle CM, Lundblad JR, Kwok RP (2003) Acetylation of cAMP-responsive element-binding protein (CREB) by CREB-binding protein enhances CREB-dependent transcription. J Biol Chem 278: 15727–15734. doi: 10.1074/jbc.m300546200
[62]  Sundar IK, Chung S, Hwang JW, Lapek JD Jr, Bulger M, et al. (2012) Mitogen- and stress-activated kinase 1 (MSK1) regulates cigarette smoke-induced histone modifications on NF-kappaB-dependent genes. PLoS One 7: e31378. doi: 10.1371/journal.pone.0031378
[63]  Chen LF, Mu Y, Greene WC (2002) Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-kappaB. EMBO J 21: 6539–6548. doi: 10.1093/emboj/cdf660
[64]  Serrano AL, Baeza-Raja B, Perdiguero E, Jardi M, Munoz-Canoves P (2008) Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab 7: 33–44. doi: 10.1016/j.cmet.2007.11.011
[65]  Warren GL, O'Farrell L, Summan M, Hulderman T, Mishra D, et al. (2004) Role of CC chemokines in skeletal muscle functional restoration after injury. Am J Physiol Cell Physiol 286: C1031–1036. doi: 10.1152/ajpcell.00467.2003
[66]  Corti S, Salani S, Del Bo R, Sironi M, Strazzer S, et al. (2001) Chemotactic factors enhance myogenic cell migration across an endothelial monolayer. Exp Cell Res 268: 36–44. doi: 10.1006/excr.2001.5267

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133