全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Regulators of Human White Adipose Browning: Evidence for Sympathetic Control and Sexual Dimorphic Responses to Sprint Interval Training

DOI: 10.1371/journal.pone.0090696

Full-Text   Cite this paper   Add to My Lib

Abstract:

The conversion of white adipose to the highly thermogenic beige adipose tissue has been proposed as a potential strategy to counter the unfavorable consequences of obesity. Three regulators of this conversion have recently emerged but information regarding their control is limited, and contradictory. We present two studies examining the control of these regulators. Study 1: In 10 young men, the plasma concentrations of irisin and fibroblast growth factor 21 (FGF21) were determined prior to and during activation of the sympathetic nervous system via hypoxic gas breathing (FIO2 = 0.11). The measurements were performed twice, once with and once without prior/concurrent sympathetic inhibition via transdermal clonidine administration. FGF21 was unaffected by basal sympathetic inhibition (338±113 vs. 295±80 pg/mL; P = 0.43; mean±SE), but was increased during hypoxia mediated sympathetic activation (368±135); this response was abrogated (P = 0.035) with clonidine (269±93). Irisin was unaffected by sympathetic inhibition and/or hypoxia (P>0.21). Study 2: The plasma concentration of irisin and FGF21, and the skeletal muscle protein content of fibronectin type III domain containing 5 (FNDC5) was determined in 19 young adults prior to and following three weeks of sprint interval training (SIT). SIT decreased FGF21 (338±78 vs. 251±36; P = 0.046) but did not affect FNDC5 (P = 0.79). Irisin was decreased in males (127±18 vs. 90±23 ng/mL; P = 0.045) and increased in females (139±14 vs. 170±18). Collectively, these data suggest a potential regulatory role of acute sympathetic activation pertaining to the browning of white adipose; further, there appears to be a sexual dimorphic response of irisin to SIT.

References

[1]  Wu J, Bostr?m P, Sparks LM, Ye L, Choi JH, et al. (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150: 366–376 doi:10.1016/j.cell.2012.05.016.
[2]  Tiraby C, Tavernier G, Lefort C, Larrouy D, Bouillaud F, et al. (2003) Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 278: 33370–33376 doi:10.1074/jbc.M305235200.
[3]  Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, et al. (2009) Brown Fat in Humans: Turning up the Heat on Obesity. Diabetes 58: 1482–1484 doi:10.2337/db09-0622.
[4]  Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, et al. (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 286: 12983–12990 doi:10.1074/jbc.M110.215889.
[5]  Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, et al. (2012) FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26: 271–281 doi:10.1101/gad.177857.111.
[6]  Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, et al. (2009) Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models—association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 297: E1105–E1114 doi:10.1152/ajpendo.00348.2009.
[7]  Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, et al. (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115: 1627–1635 doi:10.1172/JCI23606.
[8]  Kralisch S, T?njes A, Krause K, Richter J, Lossner U, et al. (2013) Fibroblast growth factor-21 serum concentrations are associated with metabolic and hepatic markers in humans. J Endocrinol 216: 135–143. doi: 10.1530/joe-12-0367
[9]  Zhang X, Yeung DCY, Karpisek M, Stejskal D, Zhou ZG, et al. (2008) Serum FGF21 Levels Are Increased in Obesity and Are Independently Associated With the Metabolic Syndrome in Humans. Diabetes 57: 1246–1253 doi:10.2337/db07-1476.
[10]  Bostr?m P, Wu J, Jedrychowski MP, Korde A, Ye L, et al. (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481: 463–468 doi:10.1038/nature10777.
[11]  Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, et al. (2013) FNDC5/Irisin Is Not Only a Myokine but Also an Adipokine. PLoS ONE 8: e60563 doi:10.1371/journal.pone.0060563.
[12]  van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JMAFL, Kemerink GJ, et al. (2009) Cold-Activated Brown Adipose Tissue in Healthy Men. N Engl J Med 360: 1500–1508 doi:10.1056/NEJMoa0808718.
[13]  Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, et al. (2011) Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 17: 736–740 doi:10.2119/molmed.2011.00075.
[14]  Cypess AM, Chen YC, Sze C, Wang K, English J, et al. (2012) Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proceedings of the National Academy of Sciences 109: 10001–10005 doi:10.1073/pnas.1207911109.
[15]  Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, et al. (2007) An Increase in Murine Skeletal Muscle Peroxisome Proliferator-Activated Receptor-Coactivator-1alpha (PGC-1alpha) mRNA in Response to Exercise Is Mediated by Beta-Adrenergic Receptor Activation. Endocrinology 148: 3441–3448 doi:10.1210/en.2006-1646.
[16]  Kim KH, Kim SH, Min Y-K, Yang H-M, Lee J-B, et al. (2013) Acute Exercise Induces FGF21 Expression in Mice and in Healthy Humans. PLoS ONE 8: e63517 doi:10.1371/journal.pone.0063517.
[17]  Huh JY, Panagiotou G, Mougios V, Brinkoetter M, Vamvini MT, et al. (2012) FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metab Clin Exp 61: 1725–1738 doi:10.1016/j.metabol.2012.09.002.
[18]  Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, Brito-Córdova G, Gómez-Pérez FJ, et al. (2012) Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS ONE 7: e38022 doi:10.1371/journal.pone.0038022.
[19]  Peltonen GL, Scalzo RL, Schweder MM, Larson DG, Luckasen GJ, et al. (2012) Sympathetic inhibition attenuates hypoxia induced insulin resistance in healthy adult humans. J Physiol (Lond) 590: 2801–2809 doi:10.1113/jphysiol.2011.227090.
[20]  Richards JC, Johnson TK, Kuzma JN, Lonac MC, Schweder MM, et al. (2010) Short-term sprint interval training increases insulin sensitivity in healthy adults but does not affect the thermogenic response to β-adrenergic stimulation. J Physiol (Lond) 588: 2961–2972. doi: 10.1113/jphysiol.2010.189886
[21]  Newsom SA, Richards JC, Johnson TK, Kuzma JN, Lonac MC, et al. (2010) Short-term sympathoadrenal inhibition augments the thermogenic response to beta-adrenergic receptor stimulation. J Endocrinol 206: 307–315 doi:10.1677/JOE-10-0152.
[22]  Schwartz RS, Jaeger LF, Veith RC (1990) The thermic effect of feeding in older men: the importance of the sympathetic nervous system. Metab Clin Exp 39: 733–737. doi: 10.1016/0026-0495(90)90109-p
[23]  Bell C (2011) Pigment Epithelium-Derived Factor: A Not So Sympathetic Regulator of Insulin Resistance? Exercise and Sport Sciences Reviews 39: 187–190 doi:10.1097/JES.0b013e31822673f0.
[24]  Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, et al. (2009) Functional Brown Adipose Tissue in Healthy Adults. N Engl J Med 360: 1518–1525 doi:10.1056/NEJMoa0808949.
[25]  S?derlund V, Larsson SA, Jacobsson H (2007) Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 34: 1018–1022 doi:10.1007/s00259-006-0318-9.
[26]  Pilegaard H, Saltin B, Neufer PD (2003) Exercise induces transient transcriptional activation of the PGC-1alpha gene in human skeletal muscle. J Physiol (Lond) 546: 851–858. doi: 10.1113/jphysiol.2002.034850
[27]  Baar K, Wende AR, Jones TE, Marison M, Nolte LA, et al. (2002) Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J 16: 1879–1886. doi: 10.1096/fj.02-0367com
[28]  Miura S, Kai Y, Kamei Y, Ezaki O (2008) Isoform-specific increases in murine skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) mRNA in response to beta2-adrenergic receptor activation and exercise. Endocrinology 149: 4527–4533 doi:10.1210/en.2008-0466.
[29]  Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, et al. (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5: 415–425 doi:10.1016/j.cmet.2007.05.003.
[30]  Lund?sen T, Hunt MC, Nilsson L-M, Sanyal S, Angelin B, et al. (2007) PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 360: 437–440 doi:10.1016/j.bbrc.2007.06.068.
[31]  Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, et al. (2008) Adipose Fibroblast Growth Factor 21 Is Up-Regulated by Peroxisome Proliferator-Activated Receptor γ and Altered Metabolic States. Mol Pharmacol 74: 403–412. doi: 10.1124/mol.108.044826
[32]  Wang H, Qiang L, Farmer SR (2007) Identification of a Domain within Peroxisome Proliferator-Activated Receptor Regulating Expression of a Group of Genes Containing Fibroblast Growth Factor 21 That Are Selectively Repressed by SIRT1 in Adipocytes. Molecular and Cellular Biology 28: 188–200 doi:10.1128/MCB.00992-07.
[33]  Navegantes LCC (2003) Regulation and Counterregulation of Lipolysis in Vivo: Different Roles of Sympathetic Activation and Insulin. Journal of Clinical Endocrinology & Metabolism 88: 5515–5520 doi:10.1210/jc.2003-030445.
[34]  Alvarez GE, Beske SD, Ballard TP, Davy KP (2002) Sympathetic Neural Activation in Visceral Obesity. Circulation 106: 2533–2536 doi:10.1161/01.CIR.0000041244.79165.25.
[35]  Grassi G, Seravalle G, Colombo M, Bolla G, Cattaneo BM, et al. (1998) Body weight reduction, sympathetic nerve traffic, and arterial baroreflex in obese normotensive humans. Circulation 97: 2037–2042 doi:10.1161/01.CIR.97.20.2037.
[36]  Grassi G, Seravalle G, Dell'Oro R, Turri C, Pasqualinotto L, et al. (2001) Participation of the hypothalamus-hypophysis axis in the sympathetic activation of human obesity. Hypertension 38: 1316–1320. doi: 10.1161/hy1201.096117
[37]  Grassi G, Seravalle G, Cattaneo BM, Bolla GB, Lanfranchi A, et al. (1995) Sympathetic Activation in Obese Normotensive Subjects. Hypertension 25: 560–563 doi:10.1161/01.HYP.25.4.560.
[38]  Scherrer U, Randin D, Tappy L, Vollenweider P, Jequier E, et al. (1994) Body fat and sympathetic nerve activity in healthy subjects. Circulation 89: 2634–2640 doi:10.1161/01.CIR.89.6.2634.
[39]  Jones PP, Davy KP, Alexander S, Seals DR (1997) Age-related increase in muscle sympathetic nerve activity is associated with abdominal adiposity. Am J Physiol 272: E976–E980.
[40]  Monroe MB, Seals DR, Shapiro LF, Bell C, Johnson D, et al. (2001) Direct evidence for tonic sympathetic support of resting metabolic rate in healthy adult humans. Am J Physiol Endocrinol Metab 280: E740–E744.
[41]  Matsumoto T, Miyawaki C, Ue H, Kanda T, Yoshitake Y, et al. (2001) Comparison of Thermogenic Sympathetic Response to Food Intake between Obese and Non-obese Young Women. Obesity 9: 78–85 doi:10.1038/oby.2001.10.
[42]  Matsumoto T, Miyawaki T, Ue H, Kanda T, Zenji C, et al. (1999) Autonomic responsiveness to acute cold exposure in obese and non-obese young women. International journal of obesity (2005) 23: 793–800 doi:doi:10.1038/sj.ijo.0800928.
[43]  Jocken JWE, Goossens GH, Hees AMJ, Frayn KN, Baak M, et al. (2008) Effect of beta-adrenergic stimulation on whole-body and abdominal subcutaneous adipose tissue lipolysis in lean and obese men. Diabetologia 51: 320–327 doi:10.1007/s00125-007-0866-y.
[44]  Sandvei M, Jeppesen PB, St?en L, Litleskare S, Johansen E, et al. (2012) Sprint interval running increases insulin sensitivity in young healthy subjects. Arch Physiol Biochem 118: 139–147 doi:10.3109/13813455.2012.677454.
[45]  Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, et al. (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol (Lond) 575: 901–911 doi:10.1113/jphysiol.2006.112094.
[46]  Macpherson RE, Hazell TJ, Oliver TD, Paterson DH, Lemon PW (2011) Run sprint interval training improves aerobic performance but not maximal cardiac output. Medicine & Science in Sports & Exercise 43: 115–122. doi: 10.1249/mss.0b013e3181e5eacd
[47]  Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, et al. (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol (Lond) 586: 151–160 doi:10.1113/jphysiol.2007.142109.
[48]  Stuckey MI, Tordi N, Mourot L, Gurr LJ, Rakobowchuk M, et al. (2012) Autonomic recovery following sprint interval exercise. Scand J Med Sci Sports 22: 756–763 doi:10.1111/j.1600-0838.2011.01320.x.
[49]  Pekkala S, Wiklund P, Hulmi JJ, Ahtiainen JP, Horttanainen M, et al.. (2013) Are Skeletal Muscle FNDC5 Gene Expression and Irisin Release Regulated by Exercise and Related to Health? J Physiol (Lond). doi:10.1113/jphysiol.2013.263707.
[50]  Fain JN, Booth FW, Laughlin MH, Padilla J, Jenkins NT (2013) Exercise training does not increase muscle FNDC5 protein or mRNA expression in pigs. Metabolism epub ahead of print.
[51]  Sánchez J, Nozhenko Y, Palou A, Rodríguez AM (2013) Free fatty acid effects on myokine production in combination with exercise mimetics. Mol Nutr Food Res 00: 1–12. doi: 10.1002/mnfr.201300126
[52]  Hecht R, Li YS, Sun J, Belouski E, Hall M, et al.. (2012) PLOS ONE: Rationale-Based Engineering of a Potent Long-Acting FGF21 Analog for the Treatment of Type 2 Diabetes. PLoS ONE.
[53]  Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, et al. (2007) Tissue-specific Expression of betaKlotho and Fibroblast Growth Factor (FGF) Receptor Isoforms Determines Metabolic Activity of FGF19 and FGF21. J Biol Chem 282: 26687–26695 doi:10.1074/jbc.M704165200.
[54]  Kurosu H, Kuro-o M (2009) The Klotho gene family as a regulator of endocrine fibroblast growth factors. Molecular and Cellular Endocrinology 299: 72–78 doi:10.1016/j.mce.2008.10.052.
[55]  Fletcher JA, Meers GM, Laughlin HM, Ibdah JA, Thyfault JP, et al. (2012) Modulating fibroblast growth factor 21 in hyperphagic OLETF rats with daily exercise and caloric restriction. Appl Physiol Nutr Metab 37: 1054–1062. doi: 10.1139/h2012-091
[56]  Hecksteden A, Wegmann M, Steffen A, Kraushaar J, Morsch A, et al. (2013) Irisin and exercise training in humans - Results from a randomized controlled training trial. BMC Med 11: 235 doi:10.1186/1741-7015-11-235.
[57]  Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, et al.. (2013) The effects of acute and chronic exercise on PGC-1α, irisin and browning of subcutaneous adipose tissue in human. FEBS J. doi:10.1111/febs.12619.
[58]  Stengel A, Hofmann T, Goebel-Stengel M, Elbelt U, Kobelt P, et al. (2013) Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity—correlation with body mass index. Peptides 39: 125–130 doi:10.1016/j.peptides.2012.11.014.
[59]  Moreno-Navarrete JM, Ortega F, Serrano M, Guerra E, Pardo G, et al. (2013) Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 98: E769–E778 doi:10.1210/jc.2012-2749.
[60]  Jenkins A, Zhang SX, Gosmanova A, Aston C, Dashti A, et al. (2008) Increased serum pigment epithelium derived factor levels in Type 2 diabetes patients. Diabetes Res Clin Pract 82: e5–e7 doi:10.1016/j.diabres.2008.06.019.
[61]  van Marken Lichtenbelt WD, Schrauwen P (2011) Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol 301: R285–R296 doi:10.1152/ajpregu.00652.2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133