全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals

DOI: 10.1371/journal.pone.0090702

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with metabolic changes in the host. Methodology Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain, participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or increase vs. decrease of the health parameters. Principal Findings Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the responsiveness of the microbiota (AUC = 0.77–1; predicted vs. observed correlation = 0.67–0.88). Many of the predictive taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health. Conclusion This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in obese individuals with impaired metabolic health, and reveals the potential of microbiota signatures for personalized nutrition.

References

[1]  B?ckhed F (2012) Host responses to the human microbiome. Nutr Rev 70: S14–S17. doi: 10.1111/j.1753-4887.2012.00496.x
[2]  Holmes E, Kinross J, Gibson GR, Burcelin R, Jia W, et al. (2012) Therapeutic modulation of microbiota-host metabolic interactions. Science Translational Medicine 4: 137rv6. doi: 10.1126/scitranslmed.3004244
[3]  Million M, Lagier J, Yahav D, Paul M (2013) Gut bacterial microbiota and obesity. Clinical Microbiology and Infection 19: 305–313. doi: 10.1111/1469-0691.12172
[4]  Everard A, Cani PD (2013) Diabetes, obesity and gut microbiota. Best Practice & Research Clinical Gastroenterology 27: 73–83. doi: 10.1016/j.bpg.2013.03.007
[5]  Flint HJ (2011) Obesity and the gut microbiota. J Clin Gastroenterol 45: S128–S132. doi: 10.1097/mcg.0b013e31821f44c4
[6]  Kootte RS, Vrieze A, Holleman F, Dallinga-Thie GM, Zoetendal EG, et al. (2012) The therapeutic potential of manipulating gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Obesity & Metabolism 14: 112–120. doi: 10.1111/j.1463-1326.2011.01483.x
[7]  Delzenne NM, Neyrinck AM, Baeckhed F, Cani PD (2011) Targeting gut microbiota in obesity: Effects of prebiotics and probiotics. Nature Reviews Endocrinology 7: 639–646. doi: 10.1038/nrendo.2011.126
[8]  Walker AW, Lawley TD (2012) Therapeutic modulation of intestinal dysbiosis. Pharmacological Research 69: 75–86. doi: 10.1016/j.phrs.2012.09.008
[9]  Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489: 220–230. doi: 10.1038/nature11550
[10]  Lampe JW, Navarro SL, Hullar MAJ, Shojaie A (2013) Inter-individual differences in response to dietary intervention: Integrating omics platforms towards personalised dietary recommendations. Proc Nutr Soc 72: 207–218. doi: 10.1017/s0029665113000025
[11]  Louis P (2012) Dietary modulation of the human gut microbiota. Agro Food Industry Hi-Tech 23: 26–28.
[12]  Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, et al. (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota. Isme Journal 5: 220–230. doi: 10.1038/ismej.2010.118
[13]  McOrist AL, Miller RB, Bird AR, Keogh JB, Noakes M, et al. (2011) Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J Nutr 141: 883–889. doi: 10.3945/jn.110.128504
[14]  Haiser HJ, Turnbaugh PJ (2012) Is it time for a metagenomic basis of therapeutics? Science 336: 1253–1255. doi: 10.1126/science.1224396
[15]  Harmon JP, Moran NA, Ives AR (2009) Species response to environmental change: Impacts of food web interactions and evolution. Science 323: 1347–1350. doi: 10.1126/science.1167396
[16]  Lappi J, Saloj?rvi J, Kolehmainen M, Mykk?nen H, Poutanen K, et al. (2013) Intake of whole-grain and fiber-rich rye bread versus refined wheat bread does not differentiate intestinal microbiota composition in Finnish adults with metabolic syndrome. J Nutr 143: 648–655. doi: 10.3945/jn.112.172668
[17]  Salonen A, Nikkila J, Jalanka-Tuovinen J, Immonen O, Rajilic-Stojanovic M, et al. (2010) Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: Effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J Microbiol Methods 81: 127–134. doi: 10.1016/j.mimet.2010.02.007
[18]  Dewulf EM, Cani PD, Claus SP, Fuentes S, Puylaert PG, et al. (2013) Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62: 1112–1121. doi: 10.1136/gutjnl-2012-303304
[19]  Lobley GE, Holtrop G, Bremner DM, Calder AG, Milne E, et al. (2013) Impact of short term consumption of diets high in either non-starch polysaccharides or resistant starch in comparison with moderate weight loss on indices of insulin sensitivity in subjects with metabolic syndrome. Nutrients 5: 2144–2172. doi: 10.3390/nu5062144
[20]  Jalanka-Tuovinen J, Salonen A, Nikkil? J, Immonen O, Kekkonen RA, et al. (2011) Intestinal microbiota in healthy adults: Temporal analysis reveals individual and common core and relation to intestinal symptoms Plos One. 6: e23035. doi: 10.1371/journal.pone.0023035
[21]  Rajili?-Stojanovi? M, Heilig HGHJ, Molenaar D, Kajander K, Surakka A, et al. (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: Analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11: 1736–1751. doi: 10.1111/j.1462-2920.2009.01900.x
[22]  Bolstad BM, Irizarry RA, ?strand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193. doi: 10.1093/bioinformatics/19.2.185
[23]  Nikkil? J, de Vos WM (2010) Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis. J Clin Gastroenterol 44: S2–S5. doi: 10.1097/mcg.0b013e3181e5018f
[24]  Maukonen J, Simoes C, Saarela M (2012) The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol Ecol 79: 697–708. doi: 10.1111/j.1574-6941.2011.01257.x
[25]  R Development Core Team (2011) R: A language and environment for statistical computing Vienna, Austria: R Foundation for Statistical Computing.
[26]  Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, et al. (2011) pROC: An open-source package for R and S plus to analyze and compare ROC curves. BMC Bioinformatics 12: 77. doi: 10.1186/1471-2105-12-77
[27]  Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, et al. (2012) Gut microbiome composition is linked to whole grain-induced immunological improvements. The ISME Journal 7: 269–280. doi: 10.1038/ismej.2012.104
[28]  Karlsson FH, Tremaroli V, Nookaew I, Bergstr?m G, Behre CJ, et al. (2013) Gut metagenome in european women with normal, impaired and diabetic glucose control. Nature 498: 99–103. doi: 10.1038/nature12198
[29]  Qin J, Li Y, Cai Z, Li S, Zhu J, et al. (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 55–60. doi: 10.1038/nature11450
[30]  Papa E, Docktor M, Smillie C, Weber S, Preheim SP, et al. (2012) Non-invasive mapping of the gastrointestinal microbiota identifies children with inflammatory bowel disease. Plos One 7: e39242. doi: 10.1371/journal.pone.0039242
[31]  Mutch DM, Temanni MR, Henegar C, Combes F, Pelloux V, et al. (2007) Adipose gene expression prior to weight loss can differentiate and weakly predict dietary responders. Plos One 2: e1344. doi: 10.1371/journal.pone.0001344
[32]  Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, et al. (2013) The long-term stability of the human gut microbiota. Science 341: 1237439. doi: 10.1126/science.1237439
[33]  Lahti L, Salonen A, Kekkonen RA, Saloj?rvi J, Jalanka-Tuovinen J, et al. (2013) Associations between the human intestinal microbiota, lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. PeerJ 1: e32. doi: 10.7717/peerj.32
[34]  Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, et al. (2010) The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res 51: 1101–1112. doi: 10.1194/jlr.m002774
[35]  Moore W, Holdeman LV (1974) Human fecal flora: The normal flora of 20 japanese-hawaiians. Appl Microbiol 27: 961–979.
[36]  Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, et al. (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186: 2099–2106. doi: 10.1128/jb.186.7.2099-2106.2004
[37]  Rainey FA, Hollen BJ, Small A (2009) Genus I. clostridium. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, et al., editors. Bergey's manual of systematic bacteriology. Springer. pp. 774–781.
[38]  Nakamura N, Lin HC, McSweeney CS, Mackie RI, Gaskins HR (2010) Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Food Science and Technology 1: 363–395. doi: 10.1146/annurev.food.102308.124101
[39]  Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, et al. (2011) Enterotypes of the human gut microbiome. Nature 473: 174–180. doi: 10.1038/nature10187
[40]  Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, et al. (2013) Dietary intervention impact on gut microbial gene richness. Nature 500: 585–858. doi: 10.1038/nature12738
[41]  Rydgren K, ?kland RH, ?kland T (2003) Species response curves along environmental gradients. A case study from SE norwegian swamp forests. Journal of Vegetation Science 14: 869–880. doi: 10.1111/j.1654-1103.2003.tb02220.x
[42]  Davis L, Martínez I, Walter J, Hutkins R (2010) A dose dependent impact of prebiotic galactooligosaccharides on the intestinal microbiota of healthy adults. Int J Food Microbiol 144: 285–292. doi: 10.1016/j.ijfoodmicro.2010.10.007
[43]  Kolida S, Meyer D, Gibson G (2007) A double-blind placebo-controlled study to establish the bifidogenic dose of inulin in healthy humans. Eur J Clin Nutr 61: 1189–1195. doi: 10.1038/sj.ejcn.1602636
[44]  Bouhnik Y, Raskine L, Simoneau G, Vicaut E, Neut C, et al. (2004) The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: A double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study. Am J Clin Nutr 80: 1658–1664.
[45]  Martinez I, Kim J, Duffy PR, Schlegel VL, Walter J (2010) Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One 5: e15046. doi: 10.1371/journal.pone.0015046
[46]  Maeda M, Ueda H, Yamazaki M, Ohtsuka M, Doi U (1998) Biological response modifier activity of lactococcus lactis 332. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan 118: 150–157.
[47]  Tims S, Derom C, Jonkers DM, Vlietinck R, Saris WH, et al. (2013) Microbiota conservation and BMI signatures in adult monozygotic twins. The ISME Journal 7: 707–717. doi: 10.1038/ismej.2012.146
[48]  Dworkin M, Falcom S, Rosenberg E, Schleifer K, Stackebrandt E, editors (2006) The prokaryotes A handbook on the biology of bacteria. New York: Springer.
[49]  Moosavian M, Hayati K (2008) A survey of clostridia in the patients with acute diarrhea compared with the control group. Pakistan Journal of Medical Sciences 24: 209–212.
[50]  Zeng XQ, Pan DD, Guo YX (2010) The probiotic properties of lactobacillus buchneri P2. J Appl Microbiol 108: 2059–2066. doi: 10.1111/j.1365-2672.2009.04608.x
[51]  Williams BL, Hornig M, Parekh T, Lipkin WI (2012) Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. Mbio 3: e00261. doi: 10.1128/mbio.00261-11
[52]  Cheng J, Kalliom?ki M, Heilig HG, Palva A, L?hteenoja H, et al. (2013) Duodenal microbiota composition and mucosal homeostasis in pediatric celiac disease. BMC gastroenterology 13: 113. doi: 10.1186/1471-230x-13-113
[53]  Whitford M, Yanke L, Forster R, Teather R (2001) Lachnobacterium bovis gen. nov., sp. nov., a novel bacterium isolated from the rumen and faeces of cattle. Int J Syst Evol Microbiol 51: 1977–1981. doi: 10.1099/00207713-51-6-1977

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133