全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Progressive Volume Loss and White Matter Degeneration in Cstb-Deficient Mice: A Diffusion Tensor and Longitudinal Volumetry MRI Study

DOI: 10.1371/journal.pone.0090709

Full-Text   Cite this paper   Add to My Lib

Abstract:

Unverricht-Lundborg type progressive myoclonus epilepsy (EPM1, OMIM 254800) is an autosomal recessive disorder characterized by onset at the age of 6 to 16 years, incapacitating stimulus-sensitive myoclonus and tonic-clonic epileptic seizures. It is caused by mutations in the gene encoding cystatin B. Previously, widespread white matter changes and atrophy has been detected both in adult EPM1 patients and in 6-month-old cystatin B–deficient mice, a mouse model for the EPM1 disease. In order to elucidate the spatiotemporal dynamics of the brain atrophy and white matter changes in EPM1, we conducted longitudinal in vivo magnetic resonance imaging and ex vivo diffusion tensor imaging accompanied with tract-based spatial statistics analysis to compare volumetric changes and fractional anisotropy in the brains of 1 to 6 months of age cystatin B–deficient and control mice. The results reveal progressive but non-uniform volume loss of the cystatin B–deficient mouse brains, indicating that different neuronal populations possess distinct sensitivity to the damage caused by cystatin B deficiency. The diffusion tensor imaging data reveal early and progressive white matter alterations in cystatin B–deficient mice affecting all major tracts. The results also indicate that the white matter damage in the cystatin B–deficient brain is most likely secondary to glial activation and neurodegenerative events rather than a primary result of CSTB deficiency. The data also show that diffusion tensor imaging combined with TBSS analysis provides a feasible approach not only to follow white matter damage in neurodegenerative mouse models but also to detect fractional anisotropy changes related to normal white matter maturation and reorganisation.

References

[1]  Koskiniemi M, Donner M, Majuri H, Haltia M, Norio R (1974) Progressive myoclonus epilepsy. A clinical and histopathological study. Acta Neurol Scand 50: 307–332. doi: 10.1111/j.1600-0404.1974.tb02782.x
[2]  Joensuu T, Kuronen M, Alakurtti K, Tegelberg S, Hakala P, et al. (2007) Cystatin B: Mutation detection, alternative splicing and expression in progressive myclonus epilepsy of Unverricht-Lundborg type (EPM1) patients. Eur J Hum Genet 15: 185–193. doi: 10.1038/sj.ejhg.5201723
[3]  Erdinc O, Jonsuu T, Ilgen-Uslu F, Bebek N, ?zkara ?, et al. (2010) Unverricht-lundborg disease in turkey: Delineating the phenotype between cystatin B mutation positive and negative cases. Journal of Neurological Sciences 27: 1–11.
[4]  Canafoglia L, Gennaro E, Capovilla G, Gobbi G, Boni A, et al. (2012) Electroclinical presentation and genotype-phenotype relationships in patients with Unverricht-Lundborg disease carrying compound heterozygous CSTB point and indel mutations. Epilepsia 53: 2120–2127. doi: 10.1111/j.1528-1167.2012.03718.x
[5]  Pinto E, Freitas J, Duarte AJ, Ribeiro I, Ribeiro D, et al. (2012) Unverricht-lundborg disease: Homozygosity for a new splicing mutation in the cystatin B gene. Epilepsy Res 99: 187–190. doi: 10.1016/j.eplepsyres.2011.11.004
[6]  Pennacchio LA, Myers RM (1996) Isolation and characterization of the mouse cystatin B gene. Genome Res 6: 1103–1109. doi: 10.1101/gr.6.11.1103
[7]  Lalioti MD, Scott HS, Antonarakis SE (1997) What is expanded in progressive myoclonus epilepsy? Nat Genet 17: 17. doi: 10.1038/ng0997-17
[8]  Koskenkorva P, Khyuppenen J, Niskanen E, K?n?nen M, Bendel P, et al. (2009) Motor cortex and thalamic atrophy in Unverricht-Lundborg disease: Voxel-based morphometric study. Neurology 73: 606–611. doi: 10.1212/wnl.0b013e3181b3888b
[9]  Manninen O, Koskenkorva P, Lehtim?ki KK, Hypp?nen J, K?n?nen M, et al. (2013) White matter degeneration with Unverricht-Lundborg progressive myoclonus epilepsy: A translational diffusion-tensor imaging study in patients and cystatin B-deficient mice. Radiology 269: 232–239. doi: 10.1148/radiol.13122458
[10]  Pennacchio LA, Bouley DM, Higgins KM, Scott MP, Noebels JL, et al. (1998) Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet 20: 251–258. doi: 10.1038/3059
[11]  Lieuallen K, Pennacchio LA, Park M, Myers RM, Lennon GG (2001) Cystatin B-deficient mice have increased expression of apoptosis and glial activation genes. Hum Mol Genet 10: 1867–1871. doi: 10.1093/hmg/10.18.1867
[12]  Shannon P, Pennacchio LA, Houseweart MK, Minassian BA, Myers RM (2002) Neuropathological changes in a mouse model of progressive myoclonus epilepsy: Cystatin B deficiency and Unverricht-Lundborg disease. J Neuropathol Exp Neurol 61: 1085–1091.
[13]  Tegelberg S, Kopra O, Joensuu T, Cooper JD, Lehesjoki AE (2012) Early microglial activation precedes neuronal loss in the brain of the Cstb-/- mouse model of progressive myoclonus epilepsy, EPM1. J Neuropathol Exp Neurol 71: 40–53. doi: 10.1097/nen.0b013e31823e68e1
[14]  Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, et al. (2006) Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage 31: 1487–1505. doi: 10.1016/j.neuroimage.2006.02.024
[15]  Paxinos G, Franklin K (2007) The mouse brain in stereotaxic coordinates. San Diego, Calif: London: Academic.
[16]  Sierra A, Laitinen T, Lehtimaki K, Rieppo L, Pitkanen A, et al. (2011) Diffusion tensor MRI with tract-based spatial statistics and histology reveals undiscovered lesioned areas in kainate model of epilepsy in rat. Brain Struct Funct 216: 123–135. doi: 10.1007/s00429-010-0299-0
[17]  Parmeggiani A, Lehesjoki AE, Carelli V, Posar A, Santi A, et al. (1997) Familial Unverricht-Lundborg disease: A clinical, neurophysiologic, and genetic study. Epilepsia 38: 637–641. doi: 10.1111/j.1528-1157.1997.tb01232.x
[18]  Mascalchi M, Michelucci R, Cosottini M, Tessa C, Lolli F, et al. (2002) Brainstem involvement in Unverricht-Lundborg disease (EPM1): An MRI and (1)H MRS study. Neurology 58: 1686–1689. doi: 10.1212/wnl.58.11.1686
[19]  Chew NK, Mir P, Edwards MJ, Cordivari C, Martino D, et al. (2008) The natural history of Unverricht-Lundborg disease: A report of eight genetically proven cases. Mov Disord 23: 107–113. doi: 10.1002/mds.21812
[20]  Santoshkumar B, Turnbull J, Minassian BA (2008) Unverricht-Lundborg progressive myoclonus epilepsy in oman. Pediatr Neurol 38: 252–255. doi: 10.1016/j.pediatrneurol.2007.11.006
[21]  Haltia M, Kristensson K, Sourander P (1969) Neuropathological studies in three scandinavian cases of progressive myoclonus epilepsy. Acta Neurol Scand 45: 63–77. doi: 10.1111/j.1600-0404.1969.tb01220.x
[22]  Eldridge R, Iivanainen M, Stern R, Koerber T, Wilder BJ (1983) “Baltic” myoclonus epilepsy: Hereditary disorder of childhood made worse by phenytoin. Lancet 2: 838–842. doi: 10.1016/s0140-6736(83)90749-3
[23]  Cohen NR, Hammans SR, Macpherson J, Nicoll JA (2011) New neuropathological findings in Unverricht-Lundborg disease: Neuronal intranuclear and cytoplasmic inclusions. Acta Neuropathol 121: 421–427. doi: 10.1007/s00401-010-0738-2
[24]  Franceschetti S, Sancini G, Buzzi A, Zucchini S, Paradiso B, et al. (2007) A pathogenetic hypothesis of Unverricht-Lundborg disease onset and progression. Neurobiol Dis 25: 675–685. doi: 10.1016/j.nbd.2006.11.006
[25]  Buzzi A, Chikhladze M, Falcicchia C, Paradiso B, Lanza G, et al. (2012) Loss of cortical GABA terminals in Unverricht-Lundborg disease. Neurobiol Dis 47: 216–224. doi: 10.1016/j.nbd.2012.04.005
[26]  Joensuu T, Tegelberg S, Reinmaa E, Segerstr?le M, Hakala P, et al.. (2014) Gene expression alterations in the cerebellum and granule neurons of Cstb-/- mouse are associated with early synaptic changes and inflammation. Plos ONE in press.
[27]  Prinz M, Mildner A (2011) Microglia in the CNS: Immigrants from another world. Glia 59: 177–187. doi: 10.1002/glia.21104
[28]  Ma J, Tanaka KF, Yamada G, Ikenaka K (2007) Induced expression of cathepsins and cystatin C in a murine model of demyelination. Neurochem Res 32: 311–320. doi: 10.1007/s11064-006-9183-y
[29]  Rinne R, Saukko P, Jarvinen M, Lehesjoki AE (2002) Reduced cystatin B activity correlates with enhanced cathepsin activity in progressive myoclonus epilepsy. Ann Med 34: 380–385. doi: 10.1080/078538902320772124
[30]  Lehtinen MK, Tegelberg S, Schipper H, Su H, Zukor H, et al. (2009) Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1. J Neurosci 29: 5910–5915. doi: 10.1523/jneurosci.0682-09.2009
[31]  Houseweart MK, Pennacchio LA, Vilaythong A, Peters C, Noebels JL, et al. (2003) Cathepsin B but not cathepsins L or S contributes to the pathogenesis of Unverricht-Lundborg progressive myoclonus epilepsy (EPM1). J Neurobiol 56: 315–327. doi: 10.1002/neu.10253
[32]  Verma R, Mori S, Shen D, Yarowsky P, Zhang J, et al. (2005) Spatiotemporal maturation patterns of murine brain quantified by diffusion tensor MRI and deformation-based morphometry. Proc Natl Acad Sci U S A 102: 6978–6983. doi: 10.1073/pnas.0407828102
[33]  Chahboune H, Ment LR, Stewart WB, Ma X, Rothman DL, et al. (2007) Neurodevelopment of C57B/L6 mouse brain assessed by in vivo diffusion tensor imaging. NMR Biomed 20: 375–382. doi: 10.1002/nbm.1130
[34]  Larvaron P, Boespflug-Tanguy O, Renou JP, Bonny JM (2007) In vivo analysis of the post-natal development of normal mouse brain by DTI. NMR Biomed 20: 413–421. doi: 10.1002/nbm.1082
[35]  K?lvi?inen R, Khyuppenen J, Koskenkorva P, Eriksson K, Vanninen R, et al. (2008) Clinical picture of EPM1-Unverricht-Lundborg disease. Epilepsia 49: 549–556. doi: 10.1111/j.1528-1167.2008.01546.x
[36]  Mervaala E, Partanen JV, Ker?nen T, Penttila M, Riekkinen P (1984) Prolonged cortical somatosensory evoked potential latencies in progressive myoclonus epilepsy. J Neurol Sci 64: 131–135. doi: 10.1016/0022-510x(84)90031-5
[37]  Mervaala E, Ker?nen T, P??kk?nen A, Partanen JV, Riekkinen P (1986) Visual evoked potentials, brainstem auditory evoked potentials, and quantitative EEG in baltic progressive myoclonus epilepsy. Epilepsia 27: 542–547. doi: 10.1111/j.1528-1157.1986.tb03581.x
[38]  Danner N, Julkunen P, Hypp?nen J, Niskanen E, S?is?nen L, et al. (2013) Alterations of motor cortical excitability and anatomy in Unverricht-Lundborg disease. Mov Disord 28: 1860–1867. doi: 10.1002/mds.25615
[39]  Korja M, Kaasinen V, Lamusuo S, Parkkola R, Nagren K, et al. (2007) Substantial thalamostriatal dopaminergic defect in Unverricht-Lundborg disease. Epilepsia 48: 1768–1773. doi: 10.1111/j.1528-1167.2007.01118.x

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133