Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature.
References
[1]
Gumbiner BM (2005) Regulation of cadherin-mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 6: 622–634. doi: 10.1038/nrm1699
[2]
Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116: 167–179. doi: 10.1016/s0092-8674(04)00003-0
[3]
Vestweber D (2008) VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28: 223–232. doi: 10.1161/atvbaha.107.158014
[4]
Legrand P, Bibert S, Jaquinod M, Ebel C, Hewat E, et al. (2001) Self-assembly of the vascular endothelial cadherin ectodomain in a Ca2+-dependent hexameric structure. J Biol Chem 276: 3581–3588. doi: 10.1074/jbc.m002667200
[5]
Ahrens T, Lambert M, Pertz O, Sasaki T, Schulthess T, et al. (2003) Homoassociation of VE-cadherin follows a mechanism common to “classical” cadherins. J Mol Biol 325: 733–742. doi: 10.1016/s0022-2836(02)01286-x
[6]
Weis WI, Nelson WJ (2006) Re-solving the cadherin-catenin-actin conundrum. J Biol Chem 281: 35593–35597. doi: 10.1074/jbc.r600027200
[7]
Kowalczyk AP, Reynolds AB (2004) Protecting your tail: regulation of cadherin degradation by p120-catenin. Curr Opin Cell Biol 16: 522–527. doi: 10.1016/j.ceb.2004.07.001
[8]
Xiao K, Garner J, Buckley KM, Vincent PA, Chiasson CM, et al. (2005) p120-Catenin regulates clathrin-dependent endocytosis of VE-cadherin. Mol Biol Cell 16: 5141–5151. doi: 10.1091/mbc.e05-05-0440
[9]
Le TL, Yap AS, Stow JL (1999) Recycling of E-cadherin: a potential mechanism for regulating cadherin dynamics. J Cell Biol 146: 219–232. doi: 10.1083/jcb.146.1.219
[10]
Hatanaka K, Simons M, Murakami M (2011) Phosphorylation of VE-cadherin controls endothelial phenotypes via p120-catenin coupling and Rac1 activation. Am J Physiol Heart Circ Physiol 300: H162–172. doi: 10.1152/ajpheart.00650.2010
[11]
Herren B, Levkau B, Raines EW, Ross R (1998) Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cell 9: 1589–1601. doi: 10.1091/mbc.9.6.1589
[12]
Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, et al. (2008) ADAM10 regulates endothelial permeability and T-Cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 102: 1192–1201. doi: 10.1161/circresaha.107.169805
[13]
Jamur MC, Oliver C (2010) Permeabilization of cell membranes. Methods Mol Biol 588: 63–66. doi: 10.1007/978-1-59745-324-0_9
[14]
Habuchi S, Tsutsui H, Kochaniak AB, Miyawaki A, van Oijen AM (2008) mKikGR, a monomeric photoswitchable fluorescent protein. PLoS One 3: e3944. doi: 10.1371/journal.pone.0003944
[15]
Tsutsui H, Karasawa S, Shimizu H, Nukina N, Miyawaki A (2005) Semi-rational engineering of a coral fluorescent protein into an efficient highlighter. EMBO Rep 6: 233–238. doi: 10.1038/sj.embor.7400361
[16]
Golachowska MR, Hoekstra D, van ISC (2010) Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity. Trends Cell Biol 20: 618–626. doi: 10.1016/j.tcb.2010.08.004
[17]
Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, et al. (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14: 249–256. doi: 10.1038/ncb2441
[18]
Tamura K, Shan WS, Hendrickson WA, Colman DR, Shapiro L (1998) Structure-function analysis of cell adhesion by neural (N-) cadherin. Neuron 20: 1153–1163. doi: 10.1016/s0896-6273(00)80496-1
[19]
Potter MD, Barbero S, Cheresh DA (2005) Tyrosine phosphorylation of VE-cadherin prevents binding of p120- and beta-catenin and maintains the cellular mesenchymal state. J Biol Chem 280: 31906–31912. doi: 10.1074/jbc.m505568200
[20]
Schulte D, Kuppers V, Dartsch N, Broermann A, Li H, et al. (2011) Stabilizing the VE-cadherin-catenin complex blocks leukocyte extravasation and vascular permeability. EMBO J 30: 4157–4170. doi: 10.1038/emboj.2011.304
[21]
Stenmark H (2009) Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol 10: 513–525. doi: 10.1038/nrm2728
[22]
Stirling L, Williams MR, Morielli AD (2009) Dual roles for RHOA/RHO-kinase in the regulated trafficking of a voltage-sensitive potassium channel. Mol Biol Cell 20: 2991–3002. doi: 10.1091/mbc.e08-10-1074
[23]
Kumari S, Mayor S (2008) ARF1 is directly involved in dynamin-independent endocytosis. Nat Cell Biol 10: 30–41. doi: 10.1038/ncb1666
[24]
Donaldson JG, Porat-Shliom N, Cohen LA (2009) Clathrin-independent endocytosis: a unique platform for cell signaling and PM remodeling. Cell Signal 21: 1–6. doi: 10.1016/j.cellsig.2008.06.020
[25]
Schnatwinkel C, Christoforidis S, Lindsay MR, Uttenweiler-Joseph S, Wilm M, et al. (2004) The Rab5 effector Rabankyrin-5 regulates and coordinates different endocytic mechanisms. PLoS Biol 2: E261. doi: 10.1371/journal.pbio.0020261
[26]
Haga Y, Miwa N, Jahangeer S, Okada T, Nakamura S (2009) CtBP1/BARS is an activator of phospholipase D1 necessary for agonist-induced macropinocytosis. EMBO J 28: 1197–1207. doi: 10.1038/emboj.2009.78
[27]
Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Neukirchen D, et al. (2008) Lifeact: a versatile marker to visualize F-actin. Nat Methods 5: 605–607. doi: 10.1038/nmeth.1220
[28]
Limouze J, Straight AF, Mitchison T, Sellers JR (2004) Specificity of blebbistatin, an inhibitor of myosin II. J Muscle Res Cell Motil 25: 337–341. doi: 10.1007/s10974-004-6060-7
[29]
Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, et al. (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299: 1743–1747. doi: 10.1126/science.1081412
[30]
Huveneers S, Oldenburg J, Spanjaard E, van der Krogt G, Grigoriev I, et al. (2012) Vinculin associates with endothelial VE-cadherin junctions to control force-dependent remodeling. J Cell Biol 196: 641–652. doi: 10.1083/jcb.201108120
[31]
Lecuit T (2010) alpha-catenin mechanosensing for adherens junctions. Nat Cell Biol 12: 522–524. doi: 10.1038/ncb2066
[32]
Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci U S A 101: 7618–7623. doi: 10.1073/pnas.0307512101
[33]
Wu YI, Frey D, Lungu OI, Jaehrig A, Schlichting I, et al. (2009) A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461: 104–108. doi: 10.1038/nature08241
[34]
Conway DE, Breckenridge MT, Hinde E, Gratton E, Chen CS, et al. (2013) Fluid shear stress on endothelial cells modulates mechanical tension across VE-cadherin and PECAM-1. Curr Biol 23: 1024–1030. doi: 10.1016/j.cub.2013.04.049
[35]
Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, et al. (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21: 86–89. doi: 10.1038/nbt765
[36]
Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, et al. (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15: 128–136. doi: 10.1016/j.chembiol.2008.01.007
[37]
Maxfield FR, Yamashiro DJ (1987) Endosome acidification and the pathways of receptor-mediated endocytosis. Adv Exp Med Biol 225: 189–198. doi: 10.1007/978-1-4684-5442-0_16
Haupts U, Maiti S, Schwille P, Webb WW (1998) Dynamics of fluorescence fluctuations in green fluorescent protein observed by fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A 95: 13573–13578. doi: 10.1073/pnas.95.23.13573
[40]
Merzlyak EM, Goedhart J, Shcherbo D, Bulina ME, Shcheglov AS, et al. (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat Methods 4: 555–557. doi: 10.1038/nmeth1062
[41]
Jordan K, Chodock R, Hand AR, Laird DW (2001) The origin of annular junctions: a mechanism of gap junction internalization. J Cell Sci 114: 763–773.
[42]
Nickel BM, DeFranco BH, Gay VL, Murray SA (2008) Clathrin and Cx43 gap junction plaque endoexocytosis. Biochem Biophys Res Commun 374: 679–682. doi: 10.1016/j.bbrc.2008.07.108
[43]
Ippen-Ihler KA, Minkley EG Jr (1986) The conjugation system of F, the fertility factor of Escherichia coli. Annu Rev Genet 20: 593–624. doi: 10.1146/annurev.ge.20.120186.003113
Nichols JT, Miyamoto A, Olsen SL, D'Souza B, Yao C, et al. (2007) DSL ligand endocytosis physically dissociates Notch1 heterodimers before activating proteolysis can occur. J Cell Biol 176: 445–458. doi: 10.1083/jcb.200609014
[46]
Hansson EM, Lanner F, Das D, Mutvei A, Marklund U, et al. (2010) Control of Notch-ligand endocytosis by ligand-receptor interaction. J Cell Sci 123: 2931–2942. doi: 10.1242/jcs.073239
[47]
Kusakari S, Ohnishi H, Jin FJ, Kaneko Y, Murata T, et al. (2008) Trans-endocytosis of CD47 and SHPS-1 and its role in regulation of the CD47-SHPS-1 system. J Cell Sci 121: 1213–1223. doi: 10.1242/jcs.025015
[48]
Qureshi OS, Zheng Y, Nakamura K, Attridge K, Manzotti C, et al. (2011) Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science 332: 600–603. doi: 10.1126/science.1202947
[49]
Greco V, Hannus M, Eaton S (2001) Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106: 633–645. doi: 10.1016/s0092-8674(01)00484-6
[50]
Matsuda M, Kubo A, Furuse M, Tsukita S (2004) A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci 117: 1247–1257. doi: 10.1242/jcs.00972
[51]
Jerke U, Rolle S, Purfurst B, Luft FC, Nauseef WM, et al. (2013) beta2 Integrin-mediated Cell-Cell Contact Transfers Active Myeloperoxidase from Neutrophils to Endothelial Cells. J Biol Chem 288: 12910–12919. doi: 10.1074/jbc.m112.434613
[52]
Spacek J, Harris KM (2004) Trans-endocytosis via spinules in adult rat hippocampus. J Neurosci 24: 4233–4241. doi: 10.1523/jneurosci.0287-04.2004
Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303: 1007–1010. doi: 10.1126/science.1093133
[55]
Domhan S, Ma L, Tai A, Anaya Z, Beheshti A, et al. (2011) Intercellular communication by exchange of cytoplasmic material via tunneling nano-tube like structures in primary human renal epithelial cells. PLoS One 6: e21283. doi: 10.1371/journal.pone.0021283
[56]
McKinney MC, Stark DA, Teddy J, Kulesa PM (2011) Neural crest cell communication involves an exchange of cytoplasmic material through cellular bridges revealed by photoconversion of KikGR. Dev Dyn 240: 1391–1401. doi: 10.1002/dvdy.22612
[57]
Niu X, Gupta K, Yang JT, Shamblott MJ, Levchenko A (2009) Physical transfer of membrane and cytoplasmic components as a general mechanism of cell-cell communication. J Cell Sci 122: 600–610. doi: 10.1242/jcs.031427
[58]
Katakowski M, Buller B, Wang X, Rogers T, Chopp M (2010) Functional microRNA is transferred between glioma cells. Cancer Res 70: 8259–8263. doi: 10.1158/0008-5472.can-10-0604
[59]
Hosoda T, Zheng H, Cabral-da-Silva M, Sanada F, Ide-Iwata N, et al. (2011) Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123: 1287–1296. doi: 10.1161/circulationaha.110.982918
[60]
Valiunas V, Polosina YY, Miller H, Potapova IA, Valiuniene L, et al. (2005) Connexin-specific cell-to-cell transfer of short interfering RNA by gap junctions. J Physiol 568: 459–468. doi: 10.1113/jphysiol.2005.090985
[61]
Kogure T, Lin WL, Yan IK, Braconi C, Patel T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology 54: 1237–1248. doi: 10.1002/hep.24504
[62]
Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, et al. (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2: 282. doi: 10.1038/ncomms1285
[63]
Allport JR, Lim YC, Shipley JM, Senior RM, Shapiro SD, et al. (2002) Neutrophils from MMP-9- or neutrophil elastase-deficient mice show no defect in transendothelial migration under flow in vitro. J Leukoc Biol 71: 821–828.
[64]
Lanahan AA, Chittenden TW, Mulvihill E, Smith K, Schwartz S, et al. (2006) Synectin-dependent gene expression in endothelial cells. Physiol Genomics 27: 380–390. doi: 10.1152/physiolgenomics.00145.2006
[65]
Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, et al. (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5: 545–551. doi: 10.1038/nmeth.1209
[66]
Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3: Unit 3 22.
[67]
Larrivee B, Prahst C, Gordon E, del Toro R, Mathivet T, et al. (2012) ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway. Dev Cell 22: 489–500. doi: 10.1016/j.devcel.2012.02.005
[68]
Kim JD, Kang H, Larrivee B, Lee MY, Mettlen M, et al. (2012) Context-dependent proangiogenic function of bone morphogenetic protein signaling is mediated by disabled homolog 2. Dev Cell 23: 441–448. doi: 10.1016/j.devcel.2012.07.007
[69]
Chi NC, Shaw RM, De Val S, Kang G, Jan LY, et al. (2008) Foxn4 directly regulates tbx2b expression and atrioventricular canal formation. Genes Dev 22: 734–739. doi: 10.1101/gad.1629408
[70]
Fisher S, Grice EA, Vinton RM, Bessling SL, Urasaki A, et al. (2006) Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish. Nat Protoc 1: 1297–1305. doi: 10.1038/nprot.2006.230