全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

The Tumor Necrosis Factor α (-308 A/G) Polymorphism Is Associated with Cystic Fibrosis in Mexican Patients

DOI: 10.1371/journal.pone.0090945

Full-Text   Cite this paper   Add to My Lib

Abstract:

Environmental and genetic factors may modify or contribute to the phenotypic differences observed in multigenic and monogenic diseases, such as cystic fibrosis (CF). An analysis of modifier genes can be helpful for estimating patient prognosis and directing preventive care. The aim of this study is to determine the association between seven genetic variants of four modifier genes and CF by comparing their corresponding allelic and genotypic frequencies in CF patients (n = 81) and control subjects (n = 104). Genetic variants of MBL2 exon 1 (A, B, C and D), the IL-8 promoter (?251 A/T), the TNFα promoter (TNF1/TNF2), and SERPINA1 (PI*Z and PI*S) were tested in CF patients and control subjects from northeastern Mexico by PCR-RFLP. Results The TNF2 allele (P = 0.012, OR 3.43, 95% CI 1.25–9.38) was significantly associated with CF under the dominant and additive models but was not associated with CF under the recessive model. This association remained statistically significant after adjusting for multiple tests using the Bonferroni correction (P = 0.0482). The other tested variants and genotypes did not show any association with the disease. Conclusion An analysis of seven genetic variants of four modifier genes showed that one variant, the TNF2 allele, appears to be significantly associated with CF in Mexican patients.

References

[1]  Collaco JM, Cutting GR (2008) Update on gene modifiers in cystic fibrosis. Curr Opin Pulm Med 14: 559–566. doi: 10.1097/mcp.0b013e3283121cdc
[2]  Velázquez A, Vela-Amieva M, Naylor EW, Chace DH (2000) Tamiz neonatal ampliado. Rev Mex Pediatr 67: 206–213.
[3]  Rowntree RK, Harris A (2003) The phenotypic consequences of CFTR mutations. Ann Hum Genet 67: 471–485. doi: 10.1046/j.1469-1809.2003.00028.x
[4]  Turner MW (1996) Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today 17: 532–540. doi: 10.1016/s0167-5699(96)80908-x
[5]  Madsen HO, Satz ML, Hogh B, Svejgaard A, Garred P (1998) Different molecular events result in low protein levels of mannan-binding lectin in populations from southeast Africa and South America. J Immunol 161: 3169–3175.
[6]  Yarden J, Radojkovic D, De Boeck K, Macek M Jr, Zemkova D, et al. (2004) Polymorphisms in the mannose binding lectin gene affect the cystic fibrosis pulmonary phenotype. J Med Genet 41: 629–633. doi: 10.1136/jmg.2003.017947
[7]  Garred P, Larsen F, Seyfarth J, Fujita R, Madsen HO (2006) Mannose-binding lectin and its genetic variants. Genes Immun 7: 85–94. doi: 10.1038/sj.gene.6364283
[8]  Eisen DP (2010) Mannose-binding lectin deficiency and respiratory tract infection. J Innate Immun 2: 114–122. doi: 10.1159/000228159
[9]  Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, et al. (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56: 559–564. doi: 10.1016/1043-4666(94)90129-5
[10]  Puthothu B, Krueger M, Heinze J, Forster J, Heinzmann A (2006) Impact of IL8 and IL8-receptor alpha polymorphisms on the genetics of bronchial asthma and severe RSV infections. Clin Mol Allergy 4: 2.
[11]  Hull J, Thomson A, Kwiatkowski D (2000) Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax 55: 1023–1027. doi: 10.1136/thorax.55.12.1023
[12]  Mizunoe S, Shuto T, Suzuki S, Matsumoto C, Watanabe K, et al. (2012) Synergism between interleukin (IL)-17 and toll-like receptor 2 and 4 signals to induce IL-8 expression in cystic fibrosis airway epithelial cells. J Pharmacol Sci 118: 512–520. doi: 10.1254/jphs.11240fp
[13]  Cowan MJ, Huang X, Yao XL, Shelhamer JH (2000) Tumor necrosis factor alpha stimulation of human Clara cell secretory protein production by human airway epithelial cells. Ann N Y Acad Sci 923: 193–201. doi: 10.1111/j.1749-6632.2000.tb05530.x
[14]  Lora JM, Zhang DM, Liao SM, Burwell T, King AM, et al. (2005) Tumor necrosis factor-alpha triggers mucus production in airway epithelium through an IkappaB kinase beta-dependent mechanism. J Biol Chem 280: 36510–36517. doi: 10.1074/jbc.m507977200
[15]  Hajeer AH, Hutchinson IV (2000) TNF-alpha gene polymorphism: clinical and biological implications. Microsc Res Tech 50: 216–228. doi: 10.1002/1097-0029(20000801)50:3<216::aid-jemt5>3.3.co;2-h
[16]  Gambari R, Borgatti M, Lampronti I, Fabbri E, Brognara E, et al. (2012) Corilagin is a potent inhibitor of NF-kappaB activity and downregulates TNF-alpha induced expression of IL-8 gene in cystic fibrosis IB3–1 cells. Int Immunopharmacol 13: 308–315. doi: 10.1016/j.intimp.2012.04.010
[17]  Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 94: 3195–3199. doi: 10.1073/pnas.94.7.3195
[18]  Kok KF, te Morsche RH, van Oijen MG, Drenth JP (2010) Prevalence of genetic polymorphisms in the promoter region of the alpha-1 antitrypsin (SERPINA1) gene in chronic liver disease: a case control study. BMC Gastroenterol 10: 22. doi: 10.1186/1471-230x-10-22
[19]  Miravitlles M, Vila S, Jardi R, de la Roza C, Rodriguez-Frias F, et al. (2003) Emphysema due to alpha-antitrypsin deficiency: familial study of the YBARCELONA variant. Chest 124: 404–406. doi: 10.1378/chest.124.1.404
[20]  Araujo FG, Novaes FC, Santos NP, Martins VC, Souza SM, et al. (2005) Prevalence of deltaF508, G551D, G542X, and R553X mutations among cystic fibrosis patients in the North of Brazil. Braz J Med Biol Res 38: 11–15. doi: 10.1590/s0100-879x2005000100003
[21]  Sandford AJ, Chagani T, Spinelli JJ, Pare PD (1999) alpha1-antitrypsin genotypes and the acute-phase response to open heart surgery. Am J Respir Crit Care Med 159: 1624–1628. doi: 10.1164/ajrccm.159.5.9711004
[22]  Tin SK, Lee LY, Thumboo J, Koh DR, Fong KY (2005) PCR-RFLP genotyping for exon 1 and promoter region mutations of the human mannose binding lectin (MBL-2) gene. J Immunol Methods 303: 148–151. doi: 10.1016/j.jim.2005.06.001
[23]  Lee WP, Tai DI, Lan KH, Li AF, Hsu HC, et al. (2005) The ?251T allele of the interleukin-8 promoter is associated with increased risk of gastric carcinoma featuring diffuse-type histopathology in Chinese population. Clin Cancer Res 11: 6431–6441. doi: 10.1158/1078-0432.ccr-05-0942
[24]  Chen YP, Pfab T, Slowinski T, Richter CM, Godes M, et al. (2006) Impact of genetic variation of tumor necrosis factor-alpha on gestational hypertension. Chin Med J (Engl) 119: 719–724.
[25]  Orozco L, Velazquez R, Zielenski J, Tsui LC, Chavez M, et al. (2000) Spectrum of CFTR mutations in Mexican cystic fibrosis patients: identification of five novel mutations (W1098C, 846delT, P750L, 4160insGGGG and 297–1G–>A). Hum Genet 106: 360–365. doi: 10.1007/s004390051051
[26]  Villalobos-Torres C, Rojas-Martinez A, Villareal-Castellanos E, Cantu JM, Sanchez-Anzaldo FJ, et al. (1997) Analysis of 16 cystic fibrosis mutations in Mexican patients. Am J Med Genet 69: 380–382. doi: 10.1002/(sici)1096-8628(19970414)69:4<380::aid-ajmg8>3.3.co;2-8
[27]  Chavez-Saldana M, Yokoyama E, Lezana JL, Carnevale A, Macias M, et al. (2010) CFTR allelic heterogeneity in Mexican patients with cystic fibrosis: implications for molecular screening. Rev Invest Clin 62: 546–552.
[28]  Grebe TA, Seltzer WK, DeMarchi J, Silva DK, Doane WW, et al. (1994) Genetic analysis of Hispanic individuals with cystic fibrosis. Am J Hum Genet 54: 443–446.
[29]  Sugarman EA, Rohlfs EM, Silverman LM, Allitto BA (2004) CFTR mutation distribution among U.S. Hispanic and African American individuals: evaluation in cystic fibrosis patient and carrier screening populations. Genet Med 6: 392–399. doi: 10.1097/01.gim.0000139503.22088.66
[30]  Schrijver I, Ramalingam S, Sankaran R, Swanson S, Dunlop CL, et al. (2005) Diagnostic testing by CFTR gene mutation analysis in a large group of Hispanics: novel mutations and assessment of a population-specific mutation spectrum. J Mol Diagn 7: 289–299. doi: 10.1016/s1525-1578(10)60557-0
[31]  Ali?o-Pellicer SF, Antelo-Landeira MC, Baamonde-Vidarte A, Beltrán-Bengoechea B, Berná-Torres N, et al. (2003) Federación Espa?ola contra la Fibrosis Quística. Libro Blanco de atención a la fibrosis quística; Consumo MdSy, editor. Madrid, Espa?a.
[32]  Alonso MJ, Heine-Suner D, Calvo M, Rosell J, Gimenez J, et al. (2007) Spectrum of mutations in the CFTR gene in cystic fibrosis patients of Spanish ancestry. Ann Hum Genet 71: 194–201. doi: 10.1111/j.1469-1809.2006.00310.x
[33]  Shmarina G, Pukhalsky A, Petrova N, Zakharova E, Avakian L, et al. (2013) TNF gene polymorphisms in cystic fibrosis patients: contribution to the disease progression. J Transl Med 11: 19. doi: 10.1186/1479-5876-11-19
[34]  Jimenez-Morales S, Velazquez-Cruz R, Ramirez-Bello J, Bonilla-Gonzalez E, Romero-Hidalgo S, et al. (2009) Tumor necrosis factor-alpha is a common genetic risk factor for asthma, juvenile rheumatoid arthritis, and systemic lupus erythematosus in a Mexican pediatric population. Hum Immunol 70: 251–256. doi: 10.1016/j.humimm.2009.01.027
[35]  Vargas-Alarcon G, Ramirez-Bello J, Juarez-Cedillo T, Ramirez-Fuentes S, Carrillo-Sanchez S, et al. (2012) Distribution of the IL-1RN, IL-6, IL-10, INF-gamma, and TNF-alpha Gene Polymorphisms in the Mexican Population. Genet Test Mol Biomarkers 16: 1246–1253. doi: 10.1089/gtmb.2012.0100
[36]  Gomez Flores-Ramos L, Escoto-De Dios A, Puebla-Perez AM, Figuera-Villanueva LE, Ramos-Silva A, et al. (2013) Association of the tumor necrosis factor-alpha ?308 G>A polymorphism with breast cancer in Mexican women. Genet Mol Res 12: 5680–5693. doi: 10.4238/2013.november.18.17
[37]  Hull J, Thomson AH (1998) Contribution of genetic factors other than CFTR to disease severity in cystic fibrosis. Thorax 53: 1018–1021. doi: 10.1136/thx.53.12.1018
[38]  Rodriguez-Carreon AA, Zuniga J, Hernandez-Pacheco G, Rodriguez-Perez JM, Perez-Hernandez N, et al. (2005) Tumor necrosis factor-alpha ?308 promoter polymorphism contributes independently to HLA alleles in the severity of rheumatoid arthritis in Mexicans. J Autoimmun 24: 63–68. doi: 10.1016/j.jaut.2004.11.002
[39]  Parra-Rojas I, Ruiz-Madrigal B, Martinez-Lopez E, Panduro A (2006) Influence of the ?308 TNF-alpha and ?174 IL-6 polymorphisms on lipid profile in Mexican subjects. Hereditas 143: 167–172. doi: 10.1111/j.2006.0018-0661.01936.x
[40]  Vargas-Alarcon G, Casasola-Vargas J, Rodriguez-Perez JM, Huerta-Sil G, Perez-Hernandez N, et al. (2006) Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with spondyloarthritis. Hum Immunol 67: 826–832. doi: 10.1016/j.humimm.2006.07.009
[41]  Castro-Giner F, Kogevinas M, Imboden M, de Cid R, Jarvis D, et al. (2009) Joint effect of obesity and TNFA variability on asthma: two international cohort studies. Eur Respir J 33: 1003–1009. doi: 10.1183/09031936.00140608
[42]  Wu H, Romieu I, Sienra-Monge JJ, del Rio-Navarro BE, Anderson DM, et al. (2007) Parental smoking modifies the relation between genetic variation in tumor necrosis factor-alpha (TNF) and childhood asthma. Environ Health Perspect 115: 616–622. doi: 10.1289/ehp.9740
[43]  Correa PA, Gomez LM, Anaya JM (2004) [Polymorphism of TNF-alpha in autoimmunity and tuberculosis]. Biomedica 24 Supp 1: 43–51.
[44]  Correa PA, Gomez LM, Cadena J, Anaya JM (2005) Autoimmunity and tuberculosis. Opposite association with TNF polymorphism. J Rheumatol 32: 219–224.
[45]  Buranawuti K, Boyle MP, Cheng S, Steiner LL, McDougal K, et al. (2007) Variants in mannose-binding lectin and tumour necrosis factor alpha affect survival in cystic fibrosis. J Med Genet 44: 209–214. doi: 10.1136/jmg.2006.046318
[46]  Muhlebach MS, MacDonald SL, Button B, Hubbard JJ, Turner ML, et al. (2006) Association between mannan-binding lectin and impaired lung function in cystic fibrosis may be age-dependent. Clin Exp Immunol 145: 302–307. doi: 10.1111/j.1365-2249.2006.03151.x
[47]  Davies JC, Turner MW, Klein N (2004) Impaired pulmonary status in cystic fibrosis adults with two mutated MBL-2 alleles. Eur Respir J 24: 798–804. doi: 10.1183/09031936.04.00055404
[48]  Haerynck F, Van Steen K, Cattaert T, Loeys B, Van Daele S, et al. (2012) Polymorphisms in the lectin pathway genes as a possible cause of early chronic Pseudomonas aeruginosa colonization in cystic fibrosis patients. Hum Immunol 73: 1175–1183. doi: 10.1016/j.humimm.2012.08.010
[49]  Nagy A, Kozma GT, Keszei M, Treszl A, Falus A, et al. (2003) The development of asthma in children infected with Chlamydia pneumoniae is dependent on the modifying effect of mannose-binding lectin. J Allergy Clin Immunol 112: 729–734. doi: 10.1016/s0091-6749(03)02010-4
[50]  Uguz A, Berber Z, Coskun M, Halide Akbas S, Yegin O (2005) Mannose-binding lectin levels in children with asthma. Pediatr Allergy Immunol 16: 231–235. doi: 10.1111/j.1399-3038.2005.00258.x
[51]  Garred P, Pressler T, Lanng S, Madsen HO, Moser C, et al. (2002) Mannose-binding lectin (MBL) therapy in an MBL-deficient patient with severe cystic fibrosis lung disease. Pediatr Pulmonol 33: 201–207. doi: 10.1002/ppul.10064
[52]  Summerfield JA (2003) Clinical potential of mannose-binding lectin-replacement therapy. Biochem Soc Trans 31: 770–773. doi: 10.1042/bst0310770
[53]  Kilpatrick DC (2003) Introduction to mannan-binding lectin. Biochem Soc Trans 31: 745–747. doi: 10.1042/bst0310745
[54]  Hillian AD, Londono D, Dunn JM, Goddard KA, Pace RG, et al. (2008) Modulation of cystic fibrosis lung disease by variants in interleukin-8. Genes Immun 9: 501–508. doi: 10.1038/gene.2008.42
[55]  Heinzmann A, Ahlert I, Kurz T, Berner R, Deichmann KA (2004) Association study suggests opposite effects of polymorphisms within IL8 on bronchial asthma and respiratory syncytial virus bronchiolitis. J Allergy Clin Immunol 114: 671–676. doi: 10.1016/j.jaci.2004.06.038
[56]  Arinir U, Klein W, Rohde G, Stemmler S, Epplen JT, et al. (2005) Polymorphisms in the interleukin-8 gene in patients with chronic obstructive pulmonary disease. Electrophoresis 26: 2888–2891. doi: 10.1002/elps.200500095
[57]  Mahadeva R, Stewart S, Bilton D, Lomas DA (1998) Alpha-1 antitrypsin deficiency alleles and severe cystic fibrosis lung disease. Thorax 53: 1022–1024. doi: 10.1136/thx.53.12.1022
[58]  Mahadeva R, Westerbeek RC, Perry DJ, Lovegrove JU, Whitehouse DB, et al. (1998) Alpha1-antitrypsin deficiency alleles and the Taq-I G–>A allele in cystic fibrosis lung disease. Eur Respir J 11: 873–879. doi: 10.1183/09031936.98.11040873
[59]  Meyer P, Braun A, Roscher AA (2002) Analysis of the two common alpha-1-antitrypsin deficiency alleles PiMS and PiMZ as modifiers of Pseudomonas aeruginosa susceptibility in cystic fibrosis. Clin Genet 62: 325–327. doi: 10.1034/j.1399-0004.2002.620413.x
[60]  Frangolias DD, Ruan J, Wilcox PJ, Davidson AG, Wong LT, et al. (2003) Alpha 1-antitrypsin deficiency alleles in cystic fibrosis lung disease. Am J Respir Cell Mol Biol 29: 390–396. doi: 10.1165/rcmb.2002-0271oc
[61]  Sanchez-Dominguez CN, Buenfil-Lozano JA, Molina-Guajardo CA, Borjas-Almaguer OD, Castillo-Lartigue A, et al. (2008) Frequency of S and Z alleles for alpha-1-antitrypsin and tumor necrosis factor alpha ?308 promoter polymorphism in northeastern Mexico. Allergy Asthma Proc 29: 406–410. doi: 10.2500/aap.2008.29.3125
[62]  Kim J, Remick DG (2007) Tumor necrosis factor inhibitors for the treatment of asthma. Curr Allergy Asthma Rep 7: 151–156. doi: 10.1007/s11882-007-0013-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133