全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Broad HIV Epitope Specificity and Viral Inhibition Induced by Multigenic HIV-1 Adenovirus Subtype 35 Vector Vaccine in Healthy Uninfected Adults

DOI: 10.1371/journal.pone.0090378

Full-Text   Cite this paper   Add to My Lib

Abstract:

A correlation between in vivo and in vitro virus control mediated by CD8+ T-cell populations has been demonstrated by CD8 T-cell-mediated inhibition of HIV-1 and SIV replication in vitro in peripheral blood mononuclear cells (PBMCs) from infected humans and non-human primates (NHPs), respectively. Here, the breadth and specificity of T-cell responses induced following vaccination with replication-defective adenovirus serotype 35 (Ad35) vectors containing a fusion protein of Gag, reverse transcriptase (RT), Integrase (Int) and Nef (Ad35-GRIN) and Env (Ad35-ENV), derived from HIV-1 subtype A isolates, was assessed in 25 individuals. The vaccine induced responses to a median of 4 epitopes per vaccinee. We correlated the CD8 responses to conserved vs. variable regions with the ability to inhibit a panel of 7 HIV-1 isolates representing multiple clades in a virus inhibition assay (VIA). The results indicate that targeting immunodominant responses to highly conserved regions of the HIV-1 proteome may result in an increased ability to inhibit multiple clades of HIV-1 in vitro. The data further validate the use of the VIA to screen and select future HIV vaccine candidates. Moreover, our data suggest that future T cell-focused vaccine design should aim to induce immunodominant responses to highly conserved regions of the virus.

References

[1]  Goonetilleke N, Liu MK, Salazar-Gonzalez JF, Ferrari G, Giorgi E, et al. (2009) The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med 206: 1253–1272. doi: 10.1084/jem.20090365
[2]  Yamamoto T, Johnson MJ, Price DA, Wolinsky DI, Almeida JR, et al. (2012) Virus inhibition activity of effector memory CD8(+) T cells determines simian immunodeficiency virus load in vaccinated monkeys after vaccine breakthrough infection. J Virol 86: 5877–5884. doi: 10.1128/jvi.00315-12
[3]  Fukazawa Y, Park H, Cameron MJ, Lefebvre F, Lum R, et al. (2012) Lymph node T cell responses predict the efficacy of live attenuated SIV vaccines. Nat Med 18: 1673–1681. doi: 10.1038/nm.2934
[4]  Koff WC, Johnson PR, Watkins DI, Burton DR, Lifson JD, et al. (2006) HIV vaccine design: insights from live attenuated SIV vaccines. Nat Immunol 7: 19–23. doi: 10.1038/ni1296
[5]  Kiepiela P, Ngumbela K, Thobakgale C, Ramduth D, Honeyborne I, et al. (2007) CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 13: 46–53. doi: 10.1038/nm1520
[6]  Rolland M, Heckerman D, Deng W, Rousseau CM, Coovadia H, et al. (2008) Broad and Gag-biased HIV-1 epitope repertoires are associated with lower viral loads. PLoS One 3: e1424. doi: 10.1371/journal.pone.0001424
[7]  Stephenson KE, SanMiguel A, Simmons NL, Smith K, Lewis MG, et al. (2012) Full-length HIV-1 immunogens induce greater magnitude and comparable breadth of T lymphocyte responses to conserved HIV-1 regions compared with conserved-region-only HIV-1 immunogens in rhesus monkeys. J Virol 86: 11434–11440. doi: 10.1128/jvi.01779-12
[8]  Li F, Finnefrock AC, Dubey SA, Korber BT, Szinger J, et al. (2011) Mapping HIV-1 vaccine induced T-cell responses: bias towards less-conserved regions and potential impact on vaccine efficacy in the Step study. PLoS One 6: e20479. doi: 10.1371/journal.pone.0020479
[9]  Cohen J (2013) AIDS research. More woes for struggling HIV vaccine field. Science 340: 667. doi: 10.1126/science.340.6133.667
[10]  Hammer SM, Sobieszczyk ME, Janes H, Karuna ST, Mulligan MJ, et al.. (2013) Efficacy Trial of a DNA/rAd5 HIV-1 Preventive Vaccine. N Engl J Med.
[11]  Buchbinder SP, Mehrotra DV, Duerr A, Fitzgerald DW, Mogg R, et al. (2008) Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372: 1881–1893. doi: 10.1016/s0140-6736(08)61591-3
[12]  McElrath MJ, De Rosa SC, Moodie Z, Dubey S, Kierstead L, et al. (2008) HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 372: 1894–1905. doi: 10.1016/s0140-6736(08)61592-5
[13]  Borrow P, Lewicki H, Hahn BH, Shaw GM, Oldstone MB (1994) Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol 68: 6103–6110.
[14]  Koup RA, Safrit JT, Cao Y, Andrews CA, McLeod G, et al. (1994) Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol 68: 4650–4655.
[15]  Makedonas G, Betts MR (2011) Living in a house of cards: re-evaluating CD8+ T-cell immune correlates against HIV. Immunol Rev 239: 109–124. doi: 10.1111/j.1600-065x.2010.00968.x
[16]  Spentzou A, Bergin P, Gill D, Cheeseman H, Ashraf A, et al. (2010) Viral inhibition assay: a CD8 T cell neutralization assay for use in clinical trials of HIV-1 vaccine candidates. J Infect Dis 201: 720–729. doi: 10.1086/650492
[17]  Yang OO, Kalams SA, Rosenzweig M, Trocha A, Jones N, et al. (1996) Efficient lysis of human immunodeficiency virus type 1-infected cells by cytotoxic T lymphocytes. J Virol 70: 5799–5806.
[18]  Yang H, Yorke E, Hancock G, Clutton G, Sande N, et al. (2013) Improved quantification of HIV-1-infected CD4+ T cells using an optimised method of intracellular HIV-1 gag p24 antigen detection. J Immunol Methods 391: 174–178. doi: 10.1016/j.jim.2013.03.001
[19]  Yang H, Wu H, Hancock G, Clutton G, Sande N, et al. (2012) Antiviral inhibitory capacity of CD8+ T cells predicts the rate of CD4+ T-cell decline in HIV-1 infection. J Infect Dis 206: 552–561. doi: 10.1093/infdis/jis379
[20]  Fauce SR, Yang OO, Effros RB (2007) Autologous CD4/CD8 co-culture assay: a physiologically-relevant composite measure of CD8+ T lymphocyte function in HIV-infected persons. J Immunol Methods 327: 75–81. doi: 10.1016/j.jim.2007.07.017
[21]  Yang OO, Kalams SA, Trocha A, Cao H, Luster A, et al. (1997) Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J Virol 71: 3120–3128.
[22]  Mendoza D, Migueles SA, Rood JE, Peterson B, Johnson S, et al. (2013) Cytotoxic capacity of SIV-specific CD8(+) T cells against primary autologous targets correlates with immune control in SIV-infected rhesus macaques. PLoS Pathog 9: e1003195. doi: 10.1371/journal.ppat.1003195
[23]  Mudd PA, Martins MA, Ericsen AJ, Tully DC, Power KA, et al. (2012) Vaccine-induced CD8+ T cells control AIDS virus replication. Nature 491: 129–133. doi: 10.1038/nature11443
[24]  Freel SA, Lamoreaux L, Chattopadhyay PK, Saunders K, Zarkowsky D, et al. (2010) Phenotypic and functional profile of HIV-inhibitory CD8 T cells elicited by natural infection and heterologous prime/boost vaccination. J Virol 84: 4998–5006. doi: 10.1128/jvi.00138-10
[25]  Boaz MJ, Hayes P, Tarragona T, Seamons L, Cooper A, et al. (2009) Concordant proficiency in measurement of T-cell immunity in human immunodeficiency virus vaccine clinical trials by peripheral blood mononuclear cell and enzyme-linked immunospot assays in laboratories from three continents. Clin Vaccine Immunol 16: 147–155. doi: 10.1128/cvi.00326-08
[26]  Gill DK, Huang Y, Levine GL, Sambor A, Carter DK, et al. (2010) Equivalence of ELISpot assays demonstrated between major HIV network laboratories. PLoS One 5: e14330. doi: 10.1371/journal.pone.0014330
[27]  Keefer MC, Gilmour J, Hayes P, Gill D, Kopycinski J, et al. (2012) A phase I double blind, placebo-controlled, randomized study of a multigenic HIV-1 adenovirus subtype 35 vector vaccine in healthy uninfected adults. PLoS One 7: e41936. doi: 10.1371/journal.pone.0041936
[28]  Roederer M, Koup RA (2003) Optimized determination of T cell epitope responses. J Immunol Methods 274: 221–228. doi: 10.1016/s0022-1759(02)00423-4
[29]  Jones N, Agrawal D, Elrefaei M, Hanson A, Novitsky V, et al. (2003) Evaluation of antigen-specific responses using in vitro enriched T cells. J Immunol Methods 274: 139–147. doi: 10.1016/s0022-1759(02)00510-0
[30]  Wong JT, Colvin RB (1991) Selective reduction and proliferation of the CD4+ and CD8+ T cell subsets with bispecific monoclonal antibodies: evidence for inter-T cell-mediated cytolysis. Clin Immunol Immunopathol 58: 236–250. doi: 10.1016/0090-1229(91)90139-2
[31]  Wong JT, Colvin RB (1987) Bi-specific monoclonal antibodies: selective binding and complement fixation to cells that express two different surface antigens. J Immunol 139: 1369–1374.
[32]  Roederer M, Nozzi JL, Nason MX (2011) SPICE: Exploration and analysis of post-cytometric complex multivariate datasets. Cytometry A.
[33]  Betts MR, Koup RA (2004) Detection of T-cell degranulation: CD107a and b. Methods Cell Biol 75: 497–512. doi: 10.1016/s0091-679x(04)75020-7
[34]  Yang OO, Nguyen PT, Kalams SA, Dorfman T, Gottlinger HG, et al. (2002) Nef-mediated resistance of human immunodeficiency virus type 1 to antiviral cytotoxic T lymphocytes. J Virol 76: 1626–1631. doi: 10.1128/jvi.76.4.1626-1631.2002
[35]  Chen DY, Balamurugan A, Ng HL, Yang OO (2011) Antiviral activity of human immunodeficiency virus type 1 Gag-specific cytotoxic T lymphocyte targeting is not necessarily intrinsically superior to envelope targeting. J Virol 85: 2474–2478. doi: 10.1128/jvi.01726-10
[36]  Tenzer S, Wee E, Burgevin A, Stewart-Jones G, Friis L, et al. (2009) Antigen processing influences HIV-specific cytotoxic T lymphocyte immunodominance. Nat Immunol 10: 636–646. doi: 10.1038/ni.1728
[37]  Troyer RM, McNevin J, Liu Y, Zhang SC, Krizan RW, et al. (2009) Variable fitness impact of HIV-1 escape mutations to cytotoxic T lymphocyte (CTL) response. PLoS Pathog 5: e1000365. doi: 10.1371/journal.ppat.1000365
[38]  Prince JL, Claiborne DT, Carlson JM, Schaefer M, Yu T, et al. (2012) Role of transmitted Gag CTL polymorphisms in defining replicative capacity and early HIV-1 pathogenesis. PLoS Pathog 8: e1003041. doi: 10.1371/journal.ppat.1003041
[39]  Rolland M, Tovanabutra S, deCamp AC, Frahm N, Gilbert PB, et al. (2011) Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nat Med 17: 366–371. doi: 10.1038/nm.2316
[40]  Liu MK, Hawkins N, Ritchie AJ, Ganusov VV, Whale V, et al. (2013) Vertical T cell immunodominance and epitope entropy determine HIV-1 escape. J Clin Invest 123: 380–393. doi: 10.1172/jci65330
[41]  Letourneau S, Im EJ, Mashishi T, Brereton C, Bridgeman A, et al. (2007) Design and pre-clinical evaluation of a universal HIV-1 vaccine. PLoS One 2: e984. doi: 10.1371/journal.pone.0000984
[42]  Rolland M, Manocheewa S, Swain JV, Lanxon-Cookson EC, Kim M, et al. (2013) HIV-1 conserved-element vaccines: relationship between sequence conservation and replicative capacity. J Virol 87: 5461–5467. doi: 10.1128/jvi.03033-12
[43]  Yang OO, Daar ES, Ng HL, Shih R, Jamieson BD (2011) Increasing CTL targeting of conserved sequences during early HIV-1 infection is correlated to decreasing viremia. AIDS Res Hum Retroviruses 27: 391–398. doi: 10.1089/aid.2010.0183
[44]  Rolland M, Nickle DC, Mullins JI (2007) HIV-1 group M conserved elements vaccine. PLoS Pathog 3: e157. doi: 10.1371/journal.ppat.0030157
[45]  Borthwick N, Ahmed T, Ondondo B, Hayes P, Rose A, et al.. (2013) Vaccine-elicited human T cells recognizing conserved protein regions inhibit HIV-1. Mol Ther.
[46]  Rosario M, Borthwick N, Stewart-Jones GB, Mbewe-Mvula A, Bridgeman A, et al. (2012) Prime-boost regimens with adjuvanted synthetic long peptides elicit T cells and antibodies to conserved regions of HIV-1 in macaques. AIDS 26: 275–284. doi: 10.1097/qad.0b013e32834ed9b2

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133