全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Body Morphology, Energy Stores, and Muscle Enzyme Activity Explain Cricket Acoustic Mate Attraction Signaling Variation

DOI: 10.1371/journal.pone.0090409

Full-Text   Cite this paper   Add to My Lib

Abstract:

High mating success in animals is often dependent on males signalling attractively with high effort. Since males should be selected to maximize their reproductive success, female preferences for these traits should result in minimal signal variation persisting in the population. However, extensive signal variation persists. The genic capture hypothesis proposes genetic variation persists because fitness-conferring traits depend on an individual's basic processes, including underlying physiological, morphological, and biochemical traits, which are themselves genetically variable. To explore the traits underlying signal variation, we quantified among-male differences in signalling, morphology, energy stores, and the activities of key enzymes associated with signalling muscle metabolism in two species of crickets, Gryllus assimilis (chirper: <20 pulses/chirp) and G. texensis (triller: >20 pulses/chirp). Chirping G. assimilis primarily fuelled signalling with carbohydrate metabolism: smaller individuals and individuals with increased thoracic glycogen stores signalled for mates with greater effort; individuals with greater glycogen phosphorylase activity produced more attractive mating signals. Conversely, the more energetic trilling G. texensis fuelled signalling with both lipid and carbohydrate metabolism: individuals with increased β-hydroxyacyl-CoA dehydrogenase activity and increased thoracic free carbohydrate content signalled for mates with greater effort; individuals with higher thoracic and abdominal carbohydrate content and higher abdominal lipid stores produced more attractive signals. Our findings suggest variation in male reproductive success may be driven by hidden physiological trade-offs that affect the ability to uptake, retain, and use essential nutrients, although the results remain correlational in nature. Our findings indicate that a physiological perspective may help us to understand some of the causes of variation in behaviour.

References

[1]  Fisher RA (1930) The genetical theory of natural selection. Oxford: Clarendon Press.
[2]  Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130: 195–204.
[3]  Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc B Biol Sci 263: 1415–1421. doi: 10.1098/rspb.1996.0207
[4]  Tomkins JL, Radwan J, Kotiaho JS, Tregenza T (2004) Genic capture and resolving the lek paradox. Trends Ecol Evol 19: 323–328 doi:10.1016/j.tree.2004.03.029.
[5]  Gould SJ (1975) Allometry in primates, with emphasis on scaling and the evolution of the brain. Contrib Primatol 5: 244–292.
[6]  Kotiaho JS, Marshall SD, Barrow JH, Jakob EM, Uetz GW (1999) Estimating fitness: comparison of body condition indices revisited. Oikos 87: 399–402. doi: 10.2307/3546755
[7]  García-Berthou E (2001) On the misuse of residuals in ecology: testing regression residuals vs. the analysis of covariance. J Anim Ecol 70: 708–711 doi:10.1046/j.1365-2656.2001.00524.x.
[8]  Tomkins JL, Simmons LW (2002) Measuring relative investment: a case study of testes investment in species with alternative male reproductive tactics. Anim Behav 63: 1009–1016. doi: 10.1006/anbe.2001.1994
[9]  Hill GE (2011) Condition-dependent traits as signals of the functionality of vital cellular processes. Ecol Lett 14: 625–634 doi:10.1111/j.1461-0248.2011.01622.x.
[10]  Alexander RD (1957) The taxonomy of the field crickets of the eastern United States (Orthoptera: Gryllidae: Acheta). Ann Entomol Soc Am 50: 585–602.
[11]  Walker TJ (1957) Specificity in the response of female tree crickets (Orthoptera, Gryllidae, Oecanthinae) to calling songs of the males. Ann Entomol Soc Am 50: 626–636.
[12]  Cade WH, Cade ESE (1992) Male mating success, calling and searching behaviour at high and low densities in the field cricket, Gryllus integer. Anim Behav 43: 49–56 doi:10.1016/S0003-3472(05)80070-3.
[13]  Hedrick AV (1988) Female choice and the heritability of attractive male traits: an empirical study. Am Nat 132: 267–276. doi: 10.1086/284849
[14]  Roff D, Mousseau T, Howard D (1999) Variation in genetic architecture of calling song among populations of Allonemobius socius, A. fasciatus, and a hybrid population: drift or selection? Evolution 53: 216–224. doi: 10.2307/2640934
[15]  Cade WH (1981) Alternative male strategies: genetic differences in crickets. Science 212: 563–564. doi: 10.1126/science.212.4494.563
[16]  Bertram SM, Kemp DJ, Johnson JS, Orozco SX, Gorelick R (2007) Heritability of acoustic signalling time in the Texas field cricket, Gryllus texensis. Evol Ecol Res 9: 975–986.
[17]  Walker TJ (1962) Factors responsible for intraspecific variation in the calling songs of crickets. Evolution 16: 407–428. doi: 10.2307/2406176
[18]  Miyoshi AR, Zefa E, Martins LDP, Dias PGBS, Drehmer CJ, et al. (2007) Stridulatory file and calling song of two populations of the tropical bush cricket Eneoptera surinamensis (Orthoptera, Gryllidae, Eneopterinae). Série Zool 97: 461–465. doi: 10.1590/s0073-47212007000400016
[19]  Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16: 443–467. doi: 10.2307/2406178
[20]  Martin SD, Gray DA, Cade WH (2000) Fine-scale temperature effects on cricket calling song. Can J Zool 78: 706–712 doi:10.1139/cjz-78-5-706.
[21]  Cade WH (1991) Inter-and intraspecific variation in nightly calling duration in field crickets, Gryllus integer and G. rubens (Orthoptera: Gryllidae). J Insect Behav 4: 185–194. doi: 10.1007/bf01054611
[22]  Bertram SM (2000) The influence of age and size on temporal mate signalling behaviour. Anim Behav 60: 333–339 doi:10.1006/anbe.2000.1473.
[23]  Bertram SM, Warren PS (2005) Trade-offs in signalling components differ with signalling effort. Anim Behav 70: 477–484. doi: 10.1016/j.anbehav.2004.09.024
[24]  Bertram SM, Fitzsimmons LP, McAuley EM, Rundle HD, Gorelick R (2011) Phenotypic covariance structure and its divergence for acoustic mate attraction signals among four cricket species. Ecol Evol 1: 1–15 doi:10.1002/ece3.76.
[25]  Cade WH (1979) The evolution of alternative male reproductive strategies in field crickets. In: Blum M, editor. Sexual selection and reproductive competition in insects. Academic Press, New York, New York.
[26]  Crnokrak P, Roff DA (1995) Fitness differences associated with calling behaviour in the two wing morphs of male sand crickets, Gryllus firmus. Anim Behav 50: 1475–1481. doi: 10.1016/0003-3472(95)80004-2
[27]  Holzer B, Jacot A, Brinkhof MWG (2003) Condition-dependent signaling affects male sexual attractiveness in field crickets, Gryllus campestris. Behav Ecol 14: 353–359 doi:10.1093/beheco/14.3.353.
[28]  Hunt J, Brooks RC, Jennions MD, Smith MJ, Bentsen CL, et al. (2004) High-quality male field crickets invest heavily in sexual display but die young. Nature 432: 1024–1027 doi:10.1038/nature03084.
[29]  Judge KA, Ting JJ, Gwynne DT (2008) Condition dependence of male life span and calling effort in a field cricket. Evolution 62: 868–878. doi: 10.1111/j.1558-5646.2008.00318.x
[30]  Simmons LW (1988) The calling song of the field cricket, Gryllus bimaculatus (De Geer): constraints on transmission and its role in intermale competition and female choice. Anim Behav 36: 380–394. doi: 10.1016/s0003-3472(88)80009-5
[31]  Wagner WE (1996) Convergent song preferences between female field crickets and acoustically orienting parasitoid flies. Behav Ecol 7: 279–285 doi:10.1093/beheco/7.3.279.
[32]  Popov A, Shuvalov V (1977) Phonotactic behavior of crickets. J Comp Physiol A 126: 111–126. doi: 10.1007/bf00655876
[33]  Wagner WE, Murray A, Cade WH (1995) Phenotypic variation in the mating preferences of female field crickets, Gryllus integer. Anim Behav 49: 1269–1281 doi:10.1006/anbe.1995.0159.
[34]  Prestwich KN (1994) The energetics of acoustic signaling in Anurans and Insects. Am Zool 34: 625–643 doi:10.1093/icb/34.6.625.
[35]  Beenakkers AM, Van der Horst DJ, Van Marrewijk W (1984) Insect flight muscle metabolism. Insect Biochem 14: 243–260. doi: 10.1016/0020-1790(84)90057-x
[36]  Candy D, Becker A, Wegener G (1997) Coordination and integration of metabolism in inset flight. Comp Biochem Physiol 117: 497–512. doi: 10.1016/s0305-0491(97)00212-5
[37]  Suarez RK, Darveau C-A, Welch KC, O'Brien DM, Roubik DW, et al. (2005) Energy metabolism in orchid bee flight muscles: carbohydrate fuels all. J Exp Biol 208: 3573–3579 doi:10.1242/jeb.01775.
[38]  Bertram SM, Thomson IR, Auguste B, Dawson JW, Darveau C-A (2011) Variation in cricket acoustic mate attraction signaling explained by body morphology and metabolic differences. Anim Behav 82: 1255–1261. doi: 10.1016/j.anbehav.2011.08.021
[39]  Whattam EM, Bertram SM (2011) Effects of juvenile and adult condition on long-distance call components in the Jamaican field cricket, Gryllus assimilis. Anim Behav 81: 135–144. doi: 10.1016/j.anbehav.2010.09.024
[40]  Lorenz MW (2003) Adipokinetic hormone inhibits the formation of energy stores and egg production in the cricket Gryllus bimaculatus. Comp Biochem Physiol Part B Biochem Mol Biol 136: 197–206 doi:10.1016/S1096-4959(03)00227-6.
[41]  Kaufmann C, Brown M (2008) Determination of lipid, glycogen and sugars in mosquitoes. J Insect Physiol 54: 367–377.
[42]  Cade WH (1975) Acoustically orienting parasitoids: fly phonotaxis to cricket song. Science 190: 1312–1313. doi: 10.1126/science.190.4221.1312
[43]  Beenakkers AM (1969) Carbohydrate and fat as a fuel for insect flight. A comparative study. J Insect Physiol 15: 353–361. doi: 10.1016/0022-1910(69)90281-9
[44]  Zera AJ, Sall J, Otto K (1999) Biochemical aspects of flight and flightlessness in Gryllus: flight fuels, enzyme activities and electrophoretic profiles of flight muscles from flight-capable and flightless morphs. J Insect Physiol 45: 275–285. doi: 10.1016/s0022-1910(98)00123-1
[45]  Winchell R, Dingle H, Moyes C (2000) Enzyme profiles in two wing polymorphic soapberry bug populations (Jadera haematoloma: Rhopalidae). J Insect Physiol 46: 1365–1373. doi: 10.1016/s0022-1910(00)00055-x
[46]  O'Brien DM, Suarez RK (2001) Fuel use in hawkmoth (Amphion floridensis) flight muscle: enzyme activities and flux rates. J Exp Zool 290: 108–114. doi: 10.1002/jez.1040
[47]  Skandalis DA, Roy C, Darveau C-A (2011) Behavioural, morphological, and metabolic maturation of newly emerged adult workers of the bumblebee, Bombus impatiens. J Insect Physiol 57: 704–711 doi:10.1016/j.jinsphys.2011.02.001.
[48]  Maklakov AA, Simpson SJ, Zajitschek F, Hall MD, Dessmann J, et al. (2008) Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr Biol 18: 1062–1066. doi: 10.1016/j.cub.2008.06.059
[49]  Harrison S, Raubenheimer D, Simpson S, Godin J-G, Bertram S (2013) Towards a synthesis of frameworks in nutritional ecology: interacting effects of proteins, carbohydrates, and phsophorus on field cricket fitness. Ecol Lett: submitted.
[50]  Norin T, Malte H (2012) Intraspecific variation in aerobic metabolic rate of fish: relations with organ size and enzyme activity in brown trout. Physiol Biochem Zool 85: 645–656. doi: 10.1086/665982
[51]  Norin T, Malte H (2011) Repeatability of standard metabolic rate, active metabolic rate and aerobic scope in young brown trout during a period of moderate food availability. J Exp Biol 214: 1668–1675. doi: 10.1242/jeb.054205
[52]  Simoneau JA, Lortie G, Boulay MR, Thibault MC, Bouchard C (1986) Repeatability of fibre type and enzyme activity measurements in human skeletal muscle. Clin Physiol 6: 347–356. doi: 10.1111/j.1475-097x.1986.tb00240.x
[53]  Harper G, Allingham P, Landsberg M (2000) Age and gender effects on two biochemical markers of muscle development in cattle. Asian-Australian J Anim Sci 13: 318–321.
[54]  Darveau C-A, Billardon F, Bélanger K (2013) Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones. J Exp Biol: in press.
[55]  Skandalis DA, Darveau C-A (2012) Morphological and physiological idiosyncrasies lead to interindividual variation in flight metabolic rate in worker bumblebees (Bombus impatiens). Physiol Biochem Zool 85: 657–670. doi: 10.1086/665568
[56]  Roff DA, Gelinas MB (2003) Phenotypic plasticity and the evolution of trade-offs: the quantitative genetics of resource allocation in the wind dimorphic cricket, Gryllus firmus. Evol Biol 16: 55–63. doi: 10.1046/j.1420-9101.2003.00480.x
[57]  Bertram SM, Schade J, Elser JJ (2006) Signalling and phosphorus: correlations between mate signalling effort and body elemental composition in crickets. Anim Behav 72: 899–907. doi: 10.1016/j.anbehav.2006.02.012
[58]  Zera AJ, Sall J, Grudzinski K (1997) Flight-muscle polymorphism in the cricket Gryllus firmus: muscle characteristics and their influence on the evolution of flightlessness characteristics and their influence on the evolution of flightlessness. Physiol Zool 70: 519–529. doi: 10.1086/515865
[59]  Shiga S, Kogawauchi S (1991) Flight behaviour and selective degeneration of flight muscles in the adult cricket (Gryllus bimaculatus). J Exp Biol 155: 661–667.
[60]  Chudakova I, Bocharova-Messner O (1968) Endocrine regulation of the condition of the wing musculature in the image of the house cricket (Acheta domestica). Dokl Akad Nauk SSSR 179: 489–492.
[61]  Srihari T, Gutmann E, Novak V (1975) Effect of ecdysterone and juvenoid on the developmental involution of flight muscles in Acheta domestica. J Insect Physiol 21: 1–8. doi: 10.1016/0022-1910(75)90062-1
[62]  Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29: 1165–1188. doi: 10.1214/aos/1013699998

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133