[1] | Charmantier A, Garant D, Kruuk LEB (2014) Quantitative Genetics in the Wild. Oxford: Oxford University Press.
|
[2] | Hendry AP, Lohmann LG, Conti E, Cracraft J, Crandall KA, et al. (2010) Evolutionary Biology in Biodiversity Science, Conservation, and Policy: a Call to Action. Evolution 64: 1517–1528. doi: 10.1111/j.1558-5646.2010.00947.x
|
[3] | Meril? J, Sheldon BC, Kruuk LEB (2001) Explaining stasis: microevolutionary studies in natural populations. Genetica 112: 199–222. doi: 10.1007/978-94-010-0585-2_13
|
[4] | Walsh B, Blows MW (2009) Abundant genetic variation plus strong selection = Multivariate genetic constraints: A geometric view of adaptation. An Rev Ecol Evol Syst 40: 41–59. doi: 10.1146/annurev.ecolsys.110308.120232
|
[5] | Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. New York: Longman.
|
[6] | Hill WG, Caballero A (1992) Artificial selection experiments. An Rev Ecol Evol Syst 23: 287–310. doi: 10.1146/annurev.es.23.110192.001443
|
[7] | Blows MW (2007) A tale of two matrices: multivariate approaches in evolutionary biology. J Evol Biol 20: 1–8. doi: 10.1111/j.1420-9101.2006.01164.x
|
[8] | Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sunderland: Sinauer.
|
[9] | Kruuk LEB, Clutton-Brock T, Pemberton JM (2014) Case study: quantitative genetics and sexual selection of weaponry in a wild ungulate. In: Charmantier A, Garant D and Kruuk LEB, editors. Quantitative Genetics in the Wild. Oxford: Oxford University Press. pp. 160–176.
|
[10] | Teplitsky C, Robinson MR, Meril? J (2014) Evolutionary potential and constraints in wild populations. In: Charmantier A, Garant D and Kruuk LEB, editors. Quantitative Genetics in in the Wild. Oxford: Oxford University Press. pp. 190–208.
|
[11] | Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50: 1766–1774. doi: 10.2307/2410734
|
[12] | Hansen TF, Houle D (2008) Measuring and comparing evolvability and constraint in multivariate characters. J Evol Biol 21: 1201–1219. doi: 10.1111/j.1420-9101.2008.01573.x
|
[13] | Agrawal AF, Stinchcombe JR (2009) How much do genetic covariances alter the rate of adaptation? Proc R Soc Lond B 276: 1183–1191. doi: 10.1098/rspb.2008.1671
|
[14] | Morrissey MB, Walling CA, Wilson AJ, Pemberton JM, Clutton-Brock TH, et al. (2012) Genetic analysis of life history constraint and evolution in a wild ungulate population. Am Nat 179: E97–E114. doi: 10.1086/664686
|
[15] | Teplitsky C, Mouawad NG, Balbontín J, de Lope F, M?ller AP (2011) Quantitative genetics of migration syndromes: a study of two barn swallow populations. J Evol Biol 24: 2025–2038. doi: 10.1111/j.1420-9101.2011.02342.x
|
[16] | Eroukhmanoff F (2009) Just how much is the G-matrix actually constraining adaptation? Evol Biol 36: 323–326. doi: 10.1007/s11692-009-9062-y
|
[17] | Kruuk LEB, Clutton-Brock TH, Slate J, Pemberton JM, Brotherstone S, et al. (2000) Heritability of fitness in a wild mammal population. Proc Natl Acad Sci USA 97: 698–703. doi: 10.1073/pnas.97.2.698
|
[18] | Mousseau T, Roff DA (1987) Natural selection and the heritability of fitness components. Heredity 59: 181–197. doi: 10.1038/hdy.1987.113
|
[19] | Hansen TF, Voje KL (2011) Deviation from the line of least resistance does not exclude genetic constraints: a comment on Berner et al. (2010). Evolution 65: 1821–1822. doi: 10.1111/j.1558-5646.2011.01281.x
|
[20] | Blows MW, Chenoweth SF, Hine E (2004) Orientation of the genetic variance-covariance matrix and the fitness surface for multiple male sexually selected traits. Am Nat 163: 329–340. doi: 10.1086/381941
|
[21] | Mills JA, Yarrall JW, Mills DA (1996) Causes and consequences of mate fidelity in red-billed gulls. In: Black JM, editor editors. Partnerships in Birds – the study of monogamy. Oxford Univ. Press: Oxford. pp. 118–137.
|
[22] | Hasselquist D (1998) Polygyny in Great Reed Warblers: A long-term study of factors contributing to male fitness. Ecology 79: 2376–2390. doi: 10.1890/0012-9658(1998)079[2376:pigrwa]2.0.co;2
|
[23] | M?ller AP, de Lope F (1994) Differential costs of a secondary sexual character: an experimental test of the handicap principle. Evolution 48: 1676–1683. doi: 10.2307/2410256
|
[24] | Blondel J, Thomas DW, Charmantier A, Perret P, Bourgault P, et al. (2006) A thirty-year study of phenotypic and genetic variation of blue tits in Mediterranean habitat mosaics. Bioscience 56: 661–673. doi: 10.1641/0006-3568(2006)56[661:atsopa]2.0.co;2
|
[25] | Alatalo RV, Gustafsson L, Lundberg A (1990) Phenotypic selection on heritable size traits - Environmental variance and genetic response. Am Nat 135: 464–471. doi: 10.1086/285056
|
[26] | Wheelwright NT, Freeman-Gallant CR, Mauck RA (2006) Asymmetrical incest avoidance in the choice of social and genetic mates. Anim Behav 71: 631–639. doi: 10.1016/j.anbehav.2005.06.012
|
[27] | Nakagawa S, Lee J, Woodward B, Hatchwell B, Burke T (2008) Differential selection according to the degree of cheating in a status signal. Biol Lett 4: 667–669. doi: 10.1098/rsbl.2008.0349
|
[28] | Leisler B, Winkler H (2003) Morphological consequences of migration in passerines. In: Berthold P, Gwinner E and Sonnenschein E, editors. Avian migration. Berlin Heidelberg New York: Springer - Verlag. pp. 175–186.
|
[29] | Senar JC, Pascual J (1997) Keel and tarsus length may provide a good predictor of avian body size. Ardea 85: 269–274.
|
[30] | Balbontín J, M?ller AP, Hermosell IG, Marzal A, Reviriego M, et al. (2012) Lifetime individual plasticity in body condition of a migratory bird. Biol J Linn Soc 105: 420–434. doi: 10.1111/j.1095-8312.2011.01800.x
|
[31] | Podos J (2001) Correlated evolution of morphology and vocal signal structure in Darwin's finches. Nature 409: 185–188.
|
[32] | Grant PR, Grant BR (1995) Predicting microevolutionary responses to directional selection on heritable variation. Evolution 49: 241–251. doi: 10.2307/2410334
|
[33] | ?kesson M, Bensch S, Hasselquist D (2007) Genetic and phenotypic associations in morphological traits: a long term study of great reed warblers Acrocephalus arundinaceus. J Avian Biol 38: 58–72. doi: 10.1111/j.2006.0908-8857.03669.x
|
[34] | Teplitsky C, Mills JA, Yarrall JW, Meril? J (2009) Heritability of fitness components in a wild bird population Evolution. 63: 716–726. doi: 10.1111/j.1558-5646.2008.00581.x
|
[35] | Charmantier A, Kruuk LEB, Blondel J, Lambrechts MM (2004) Testing for microevolution in body size in three blue tit populations. J Evol Biol 17: 732–743. doi: 10.1111/j.1420-9101.2004.00734.x
|
[36] | Meril? J, Przybylo R, Sheldon BC (1999) Genetic variation and natural selection on blue tit body condition in different environments. Genet Res 73: 165–176. doi: 10.1017/s0016672398003656
|
[37] | Meril? J, Kruuk LEB, Sheldon BC (2001) Natural selection on the genetical component of variance in body condition in a wild bird population. J Evol Biol 14: 918–929. doi: 10.1046/j.1420-9101.2001.00353.x
|
[38] | Henderson CR (1973) Sire evaluation and genetic trends. J Anim Sci 1973: 10–41.
|
[39] | Kruuk LEB (2004) Estimating genetic parameters in natural populations using the ‘animal model’. Phil Trans R Soc Lond B 359: 873–890. doi: 10.1098/rstb.2003.1437
|
[40] | Hansen TF, Pelabon C, Houle D (2011) Heritability is not evolvability. Evol Biol 38: 258–277. doi: 10.1007/s11692-011-9127-6
|
[41] | Morrissey MB, Wilson AJ (2010) PEDANTICS: an R package for pedigree-based genetic simulation and pedigree manipulation, characterization and viewing. Mol Ecol 10: 711–719. doi: 10.1111/j.1755-0998.2009.02817.x
|
[42] | Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37: 1210–1226. doi: 10.2307/2408842
|
[43] | Stinchcombe JR, Agrawal AF, Hohenlohe PA, Arnold SJ, Blows MW (2008) Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing? Evolution 62: 2435–2440. doi: 10.1111/j.1558-5646.2008.00449.x
|
[44] | Hadfield JD (2010) MCMC methods for multi-response generalised linear mixed models: The MCMCglmm R package. J Stat Softw 33: 1–22.
|
[45] | Morrissey MB, de Villemereuil P, Doligez B, Gimenez O (2014) Bayesian approaches to the quantitative genetic analysis of natural populations. In: Charmantier A, Garant D and Kruuk LEB, editors. Quantitative Genetics in the Wild. Oxford: Oxford University Press. pp. 228–253.
|
[46] | Gelman A (2006) Prior distributions for variance parameters in hierarchical models. Bayesian Analysis 1: 515–533. doi: 10.1214/06-ba117a
|
[47] | Hansen TF, Pélabon C, Armbruster WS, Carlson ML (2003) Evolvability and genetic constraint in Dalechampia blossoms: components of variance and measures of evolvability. J Evol Biol 16: 754–766. doi: 10.1046/j.1420-9101.2003.00556.x
|
[48] | McCleery RH, Pettifor RA, Armbruster P, Meyer K, Sheldon BC, et al. (2004) Components of variance underlying fitness in a natural population of the great tit Parus major. Am Nat 164: E62–E72. doi: 10.1086/422660
|
[49] | Frentiu FD, Clegg SM, Blows MW, Owens IPF (2007) Large body size in an island-dwelling bird: a microevolutionary analysis. J Evol Biol 20: 639–649. doi: 10.1111/j.1420-9101.2006.01242.x
|
[50] | Dingemanse NJ, Van der Plas F, Wright J, Reale D, Schrama M, et al. (2009) Individual experience and evolutionary history of predation affect expression of heritable variation in fish personality and morphology. Proc R Soc Lond B 276: 1285–1293. doi: 10.1098/rspb.2008.1555
|
[51] | Meril? J, Bj?rklund M (2003) Phenotypic integration as a constraint and adaptation. In: Pigliucci M and Preston K, editors. Phenotypic integration. Oxford: Oxford Univ. Press. pp. 107–129.
|
[52] | Charmantier A, Perrins C, McCleery RH, Sheldon BC (2006) Quantitative genetics of age at reproduction in wild swans: support for antagonistic pleiotropy models of senescence. Proc Natl Acad Sci USA 103: 6587–6592. doi: 10.1073/pnas.0511123103
|
[53] | Kruuk LEB, Slate J, Wilson AJ (2008) New answers for old questions: The evolutionary quantitative genetics of wild animal populations. An Rev Ecol Evol Syst 39: 525–548. doi: 10.1146/annurev.ecolsys.39.110707.173542
|
[54] | Roff DA (1996) The evolution of genetic correlations: An analysis of patterns. Evolution 50: 1392–1403. doi: 10.2307/2410877
|
[55] | Hall KSS, Ryttman H, Fransson T, Stolt BO (2004) Stabilising selection on wing length in reed warblers Acrocephalus scirpaceus. J Avian Biol 35: 7–12. doi: 10.1111/j.0908-8857.2004.03220.x
|
[56] | Grant BR, Grant PR (2003) What Darwin's finches can teach us about the evolutionary origin and regulation of biodiversity. Bioscience 53: 965–975. doi: 10.1641/0006-3568(2003)053[0965:wdfctu]2.0.co;2
|
[57] | Kimmel CB, Cresko WA, Phillips PC, Ullmann B, Currey M, et al. (2012) Independent axes of genetic variation and parallel evolutionary divergence of opercle bone shape in threespine stickleback. Evolution 66: 419–434. doi: 10.1111/j.1558-5646.2011.01441.x
|
[58] | Hine E, Chenoweth SF, Rundle HD, Blows MW (2009) Characterizing the evolution of genetic variance using genetic covariance tensors. Phil Trans R Soc Lond B 364: 1567–1578. doi: 10.1098/rstb.2008.0313
|
[59] | Chenoweth SF, Rundle HD, Blows MW (2010) The contribution of selection and genetic constraints to phenotypic divergence. Am Nat 175: 186–196. doi: 10.1086/649594
|
[60] | Simonsen AK, Stinchcombe JR (2010) Quantifying evolutionary genetic constraints in the Ivyleaf Morning Glory, Ipomoea Hederacea. International Journal of Plant Sciences 171: 972–986. doi: 10.1086/656512
|
[61] | Sipielski AM, DiBattista JD, Carlson SM (2009) It's about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12: 1261–1276. doi: 10.1111/j.1461-0248.2009.01381.x
|
[62] | Morrissey MB, Hadfield JD (2012) Directional selection in temporally replicated studies is remarkably consistent. Evolution 66: 435–442. doi: 10.1111/j.1558-5646.2011.01444.x
|
[63] | Bj?rklund M, Husby A, Gustafsson L (2013) Rapid and unpredictable changes of the G-matrix in a natural bird population over 25 years. J Evol Biol 26: 1–13. doi: 10.1111/jeb.12044
|
[64] | Meril? J (2012) Evolution in response to climate change: In pursuit of the missing evidence. Bioessays 34: 811–818. doi: 10.1002/bies.201200054
|
[65] | Arnold SJ, Burger R, Hohenlohe PA, Ajie BC, Jones AG (2008) Understanding the evolution and stability of the G-matrix. Evolution 62: 2451–2461. doi: 10.1111/j.1558-5646.2008.00472.x
|
[66] | Garant D, Hadfield JD, Kruuk LEB, Sheldon BC (2008) Stability of genetic variance and covariance for reproductive characters in the face of climate change in a wild bird population. Mol Ecol 17: 179–188. doi: 10.1111/j.1365-294x.2007.03436.x
|
[67] | Kirkpatrick M (2009) Patterns of quantitative genetic variation in multiple dimensions. Genetica 136: 271–284. doi: 10.1007/s10709-008-9302-6
|
[68] | Etterson JR (2004) Evolutionary potential of Chamaecrista fasciculata in relation to climate change. 1. Clinal patterns of selection along an environmental gradient in the great plains. Evolution 58: 1446–1458. doi: 10.1111/j.0014-3820.2004.tb01726.x
|
[69] | Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. American Zoologist 36: 36–43. doi: 10.1093/icb/36.1.36
|
[70] | Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. Plos Biology 8: e1000357. doi: 10.1371/journal.pbio.1000357
|