全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Brain Activity and Functional Coupling Changes Associated with Self-Reference Effect during Both Encoding and Retrieval

DOI: 10.1371/journal.pone.0090488

Full-Text   Cite this paper   Add to My Lib

Abstract:

Information that is processed with reference to oneself, i.e. Self-Referential Processing (SRP), is generally associated with better remembering compared to information processed in a condition not related to oneself. This positive effect of the self on subsequent memory performance is called as Self-Reference Effect (SRE). The neural basis of SRE is still poorly understood. The main goal of the present work was thus to highlight brain changes associated with SRE in terms of activity and functional coupling and during both encoding and retrieval so as to assess the relative contribution of both processes to SRE. For this purpose, we used an fMRI event-related self-referential paradigm in 30 healthy young subjects and measured brain activity during both encoding and retrieval of self-relevant information compared to a semantic control condition. We found that SRE was associated with brain changes during the encoding phase only, including both greater activity in the medial prefrontal cortex and hippocampus, and greater functional coupling between these brain regions and the posterior cingulate cortex. These findings highlight the contribution of brain regions involved in both SRP and episodic memory and the relevance of the communication between these regions during the encoding process as the neural substrates of SRE. This is consistent with the idea that SRE reflects a positive effect of the reactivation of self-related memories on the encoding of new information in episodic memory.

References

[1]  Conway MA (2005) Memory and the self. Journal of Memory and Language 53: 594–628. doi: 10.1016/j.jml.2005.08.005
[2]  Haslam C, Jetten J, Haslam SA, Pugliese C, Tonks J (2011) “I remember therefore I am, and I am therefore I remember”: exploring the contributions of episodic and semantic self-knowledge to strength of identity. Br J Psychol 102: 184–203. doi: 10.1348/000712610x508091
[3]  Klein SB (2010) The self: as a construct in psychology and neuropsychological evidence for its multiplicity. Wiley Interdisciplinary Reviews: Cognitive Science: n/a–n/a.
[4]  Klein SB (2012) Self, memory, and the self-reference effect: an examination of conceptual and methodological issues. Pers Soc Psychol Rev 16: 283–300. doi: 10.1177/1088868311434214
[5]  D'Argembeau A, Jedidi H, Balteau E, Bahri M, Phillips C, et al. (2012) Valuing one's self: medial prefrontal involvement in epistemic and emotive investments in self-views. Cereb Cortex 22: 659–667. doi: 10.1093/cercor/bhr144
[6]  Fossati P, Hevenor SJ, Graham SJ, Grady C, Keightley ML, et al. (2003) In search of the emotional self: an fMRI study using positive and negative emotional words. Am J Psychiatry 160: 1938–1945. doi: 10.1176/appi.ajp.160.11.1938
[7]  Kelley WM, Macrae CN, Wyland CL, Caglar S, Inati S, et al. (2002) Finding the self? An event-related fMRI study. J Cogn Neurosci 14: 785–794. doi: 10.1162/08989290260138672
[8]  Vanderwal T, Hunyadi E, Grupe DW, Connors CM, Schultz RT (2008) Self, mother and abstract other: an fMRI study of reflective social processing. Neuroimage 41: 1437–1446. doi: 10.1016/j.neuroimage.2008.03.058
[9]  Yoshimura S, Ueda K, Suzuki S, Onoda K, Okamoto Y, et al. (2009) Self-referential processing of negative stimuli within the ventral anterior cingulate gyrus and right amygdala. Brain Cogn 69: 218–225. doi: 10.1016/j.bandc.2008.07.010
[10]  Conway MA (2009) Episodic memories. Neuropsychologia 47: 2305–2313. doi: 10.1016/j.neuropsychologia.2009.02.003
[11]  Martinelli P, Sperduti M, Piolino P (2013) Neural substrates of the self-memory system: new insights from a meta-analysis. Hum Brain Mapp 34: 1515–1529. doi: 10.1002/hbm.22008
[12]  Genon S, Bahri MA, Collette F, Angel L, d'ArgembeauA, et al.. (n.d.) Cognitive and neuroimaging evidence of impaired interaction between self and memory in Alzheimer's disease. Cortex. Available: http://www.sciencedirect.com/science/art?icle/pii/S0010945213001706. Accessed 21 October 2013.
[13]  Rugg MD, Vilberg KL (2013) Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology 23: 255–260. doi: 10.1016/j.conb.2012.11.005
[14]  D'Argembeau A, Feyers D, Majerus S, Collette F, Van der Linden M, et al. (2008) Self-reflection across time: cortical midline structures differentiate between present and past selves. Soc Cogn Affect Neurosci 3: 244–252. doi: 10.1093/scan/nsn020
[15]  Rogers TB, Kuiper NA, Kirker WS (1977) Self-reference and the encoding of personal information. J Pers Soc Psychol 35: 677–688. doi: 10.1037//0022-3514.35.9.677
[16]  Conway MA, Dewhurst SA (1995) Remembering, familiarity, and source monitoring. Q J Exp Psychol A 48: 125–140. doi: 10.1080/14640749508401380
[17]  Symons CS, Johnson BT (1997) The self-reference effect in memory: a meta-analysis. Psychol Bull 121: 371–394. doi: 10.1037//0033-2909.121.3.371
[18]  Turk DJ, Cunningham SJ, Macrae CN (2008) Self-memory biases in explicit and incidental encoding of trait adjectives. Conscious Cogn 17: 1040–1045. doi: 10.1016/j.concog.2008.02.004
[19]  Lalanne J, Grolleau P, Piolino P (2010) [Self-reference effect and episodic memory in normal aging and Alzheimer's disease: myth or reality?]. Psychol Neuropsychiatr Vieil 8: 277–294.
[20]  Benoit RG, Gilbert SJ, Volle E, Burgess PW (2010) When I think about me and simulate you: medial rostral prefrontal cortex and self-referential processes. Neuroimage 50: 1340–1349. doi: 10.1016/j.neuroimage.2009.12.091
[21]  Fossati P, Hevenor SJ, Lepage M, Graham SJ, Grady C, et al. (2004) Distributed self in episodic memory: neural correlates of successful retrieval of self-encoded positive and negative personality traits. Neuroimage 22: 1596–1604. doi: 10.1016/j.neuroimage.2004.03.034
[22]  Gutchess AH, Kensinger EA, Schacter DL (2010) Functional neuroimaging of self-referential encoding with age. Neuropsychologia 48: 211–219. doi: 10.1016/j.neuropsychologia.2009.09.006
[23]  Macrae CN, Moran JM, Heatherton TF, Banfield JF, Kelley WM (2004) Medial prefrontal activity predicts memory for self. Cereb Cortex 14: 647–654. doi: 10.1093/cercor/bhh025
[24]  Folstein MF, Folstein SE, McHugh PR (1975) ? Mini-mental state ?. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 12(3): 189–198. doi: 10.1002/(sici)1099-1166(199805)13:5<285::aid-gps753>3.3.co;2-m
[25]  Mattis S. Mental status examination for organic mental syndrome in the elderly patient. Geriatric psychiatry: a handbook for psychiatrists and primary care physicians (1976). 77–121.
[26]  Van der Linden M, Juillerat AC (2004) Neuropsychological rehabilitation in early stage alzheimer's disease: principles, methods and perspectives. Rev. Neurol. (Paris). 160(4 Pt 2): S64–70.
[27]  Signoret JL. (1991). Batterie d'efficience mnésique Coll Esprit et cerveau.
[28]  Stroop JR. Studies of interface in serial verbal reactions (1935). Journal of Experimental Psychology.
[29]  Rey A (1959) Manuel du test de copie d'une figure complexe de A. Rey. Paris: Les Editions du Centre de Psychologie Appliquée.
[30]  Deloche G., & Hannequin, D. Test de dénomination orale d'images: DO 80. (1997). éd. du Centre de psychologie appliquée.
[31]  Johnson SC, Ries ML, Hess TM, Carlsson CM, Gleason CE, et al. (2007) Effect of Alzheimer disease risk on brain function during self-appraisal in healthy middle-aged adults. Arch Gen Psychiatry 64: 1163–1171. doi: 10.1001/archpsyc.64.10.1163
[32]  Moran JM, Heatherton TF, Kelley WM (2009) Modulation of cortical midline structures by implicit and explicit self-relevance evaluation. Soc Neurosci 4: 197–211. doi: 10.1080/17470910802250519
[33]  Schmitz TW, Kawahara-Baccus TN, Johnson SC (2004) Metacognitive evaluation, self-relevance, and the right prefrontal cortex. Neuroimage 22: 941–947. doi: 10.1016/j.neuroimage.2004.02.018
[34]  Grèzes J, Decety J (2001) Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum Brain Mapp 12: 1–19. doi: 10.1002/1097-0193(200101)12:1<1::aid-hbm10>3.0.co;2-v
[35]  Saxe R, Moran JM, Scholz J, Gabrieli J (2006) Overlapping and non-overlapping brain regions for theory of mind and self reflection in individual subjects. Soc Cogn Affect Neurosci 1: 229–234. doi: 10.1093/scan/nsl034
[36]  Gallese V, Goldman A (1998) Mirror neurons and the simulation theory of mind-reading. Trends Cogn Sci (Regul Ed) 2: 493–501. doi: 10.1016/s1364-6613(98)01262-5
[37]  Mitchell JP, Banaji MR, Macrae CN (2005) The link between social cognition and self-referential thought in the medial prefrontal cortex. J Cogn Neurosci 17: 1306–1315. doi: 10.1162/0898929055002418
[38]  Keysers C, Gazzola V (2007) Integrating simulation and theory of mind: from self to social cognition. Trends Cogn Sci (Regul Ed) 11: 194–196. doi: 10.1016/j.tics.2007.02.002
[39]  Qin P, Northoff G (2011) How is our self related to midline regions and the default-mode network? NeuroImage 57: 1221–1233. doi: 10.1016/j.neuroimage.2011.05.028
[40]  Wager TD, Nichols TE (2003) Optimization of experimental design in fMRI: a general framework using a genetic algorithm. Neuroimage 18: 293–309. doi: 10.1016/s1053-8119(02)00046-0
[41]  Villain N, Landeau B, Groussard M, Mevel K, Fouquet M, et al. (2010) A simple way to improve anatomical mapping of functional brain imaging. J Neuroimaging 20: 324–333. doi: 10.1111/j.1552-6569.2010.00470.x
[42]  Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, et al. (1997) Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6: 218–229. doi: 10.1006/nimg.1997.0291
[43]  Gitelman DR, Penny WD, Ashburner J, Friston KJ (2003) Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage 19: 200–207. doi: 10.1016/s1053-8119(03)00058-2
[44]  Sajonz B, Kahnt T, Margulies DS, Park SQ, Wittmann A, et al. (2010) Delineating self-referential processing from episodic memory retrieval: common and dissociable networks. Neuroimage 50: 1606–1617. doi: 10.1016/j.neuroimage.2010.01.087
[45]  Northoff G, Bermpohl F (2004) Cortical midline structures and the self. Trends Cogn Sci (Regul Ed) 8: 102–107. doi: 10.1016/j.tics.2004.01.004
[46]  Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, et al. (2006) Self-referential processing in our brain–a meta-analysis of imaging studies on the self. Neuroimage 31: 440–457. doi: 10.1016/j.neuroimage.2005.12.002
[47]  Kim H (2012) A dual-subsystem model of the brain's default network: self-referential processing, memory retrieval processes, and autobiographical memory retrieval. Neuroimage 61: 966–977. doi: 10.1016/j.neuroimage.2012.03.025
[48]  Van der Meer L, Costafreda S, Aleman A, David AS (2010) Self-reflection and the brain: a theoretical review and meta-analysis of neuroimaging studies with implications for schizophrenia. Neurosci Biobehav Rev 34: 935–946. doi: 10.1016/j.neubiorev.2009.12.004
[49]  Viard A, Desgranges B, Eustache F, Piolino P (2012) Factors affecting medial temporal lobe engagement for past and future episodic events: an ALE meta-analysis of neuroimaging studies. Brain Cogn 80: 111–125. doi: 10.1016/j.bandc.2012.05.004
[50]  Herbert C, Herbert BM, Pauli P (2011) Emotional self-reference: brain structures involved in the processing of words describing one's own emotions. Neuropsychologia 49: 2947–2956. doi: 10.1016/j.neuropsychologia.2011.06.026
[51]  Herwig U, Kaffenberger T, J?ncke L, Brühl AB (2010) Self-related awareness and emotion regulation. Neuroimage 50: 734–741. doi: 10.1016/j.neuroimage.2009.12.089
[52]  Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124: 1–38. doi: 10.1196/annals.1440.011
[53]  Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, et al. (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103: 13848–13853. doi: 10.1073/pnas.0601417103
[54]  Greicius MD, Krasnow B, Reiss AL, Menon V (2003) functional coupling in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100: 253–258. doi: 10.1073/pnas.0135058100
[55]  Raichle ME, Snyder AZ (2007) A default mode of brain function: a brief history of an evolving idea. Neuroimage 37: 1083–1090 discussion 1097–1099. doi: 10.1016/j.neuroimage.2007.02.041
[56]  Buckner RL, Carroll DC (2007) Self-projection and the brain. Trends Cogn Sci (Regul Ed) 11: 49–57. doi: 10.1016/j.tics.2006.11.004
[57]  Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA 98: 4259–4264. doi: 10.1073/pnas.071043098
[58]  Mevel K, Landeau B, Fouquet M, La Joie R, Villain N, et al.. (2012) Age effect on the default mode network, inner thoughts, and cognitive abilities. Neurobiol Aging.
[59]  Spreng RN, Mar RA, Kim ASN (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21: 489–510. doi: 10.1162/jocn.2008.21029
[60]  Philippi CL, Duff MC, Denburg NL, Tranel D, Rudrauf D (2012) Medial PFC damage abolishes the self-reference effect. J Cogn Neurosci 24: 475–481. doi: 10.1162/jocn_a_00138
[61]  Zhu L, Guo X, Li J, Zheng L, Wang Q, et al. (2012) Hippocampal activity is associated with self-descriptiveness effect in memory, whereas self-reference effect in memory depends on medial prefrontal activity. Hippocampus 22: 1540–1552. doi: 10.1002/hipo.20994
[62]  Cabeza R, St Jacques P (2007) Functional neuroimaging of autobiographical memory. Trends Cogn Sci (Regul Ed) 11: 219–227. doi: 10.1016/j.tics.2007.02.005
[63]  Holland AC, Addis DR, Kensinger EA (2011) The neural correlates of specific versus general autobiographical memory construction and elaboration. Neuropsychologia 49: 3164–3177. doi: 10.1016/j.neuropsychologia.2011.07.015
[64]  Maguire EA, Mummery CJ, Büchel C (2000) Patterns of hippocampal-cortical interaction dissociate temporal lobe memory subsystems. Hippocampus 10: 475–482. doi: 10.1002/1098-1063(2000)10:4<475::aid-hipo14>3.3.co;2-o
[65]  Martinelli P, Sperduti M, Piolino P (2012) Neural substrates of the self-memory system: New insights from a meta-analysis. Hum Brain Mapp.
[66]  Svoboda E, McKinnon MC, Levine B (2006) The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia 44: 2189–2208. doi: 10.1016/j.neuropsychologia.2006.05.023
[67]  Craig ADB (2009) How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 10: 59–70. doi: 10.1038/nrn2555
[68]  Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, et al. (2009) Cortical hubs revealed by intrinsic functional coupling: mapping, assessment of stability, and relation to Alzheimer's disease. J Neurosci 29: 1860–1873. doi: 10.1523/jneurosci.5062-08.2009
[69]  Fransson P, Marrelec G (2008) The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. Neuroimage 42: 1178–1184. doi: 10.1016/j.neuroimage.2008.05.059
[70]  Tomasi D, Volkow ND (2011) Association between functional coupling hubs and brain networks. Cereb Cortex 21: 2003–2013. doi: 10.1093/cercor/bhq268
[71]  Craik FIM, Lockhart RS (1972) Levels of processing: A framework for memory research. Journal of verbal learning and verbal behavior 11: , 671–684.
[72]  Craik FIM, Tulving E (1975). Depth of processing and the retention of words in episodic memory. J of experimental psychology 104: , 268–294.
[73]  Craik FIM (2002). Levels of processing: past, present and future? Memory 10: , 305–318.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133