全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Enhancement of Antitumor Immunity Using a DNA-Based Replicon Vaccine Derived from Semliki Forest Virus

DOI: 10.1371/journal.pone.0090551

Full-Text   Cite this paper   Add to My Lib

Abstract:

A DNA-based replicon vaccine derived from Semliki Forest virus, PSVK-shFcG-GM/B7.1 (Fig. 1a) was designed for tumor immunotherapy as previously constructed. The expression of the fusion tumor antigen (survivin and hCGβ-CTP37) and adjuvant molecular protein (Granulocyte-Macrophage Colony-Stimulating Factor/ GM-CSF/B7.1) genes was confirmed by Immunofluorescence assay in vitro, and immunohistochemistry assay in vivo. In this paper, the immunological effect of this vaccine was determined using immunological assays as well as animal models. The results showed that this DNA vaccine induced both humoral and cellular immune responses in C57BL/6 mice after immunization, as evaluated by the ratio of CD4+/CD8+ cells and the release of IFN-γ. Furthermore, the vaccination of C57BL/6 mice with PSVK-shFcG-GM/B7.1 significantly delayed the in vivo growth of tumors in animal models (survivin+ and hCGβ+ murine melanoma, B16) when compared to vaccination with the empty vector or the other control constructs (Fig. 1b). These data indicate that this type of replicative DNA vaccine could be developed as a promising approach for tumor immunotherapy. Meanwhile, these results provide a basis for further study in vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.

References

[1]  Cirone P, Potter M, Hirte H, Chang P (2006) Immuno-isolation in cancer gene therapy. Curr Gene Ther 6: 181–191. doi: 10.2174/156652306776359513
[2]  Fynan EF, Webster RG, Fuller DH, Haynes JR, Santoro JC, et al. (1993) DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci U S A 90: 11478–11482. doi: 10.1073/pnas.90.24.11478
[3]  Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58: 491–562.
[4]  Liljestrom P, Garoff H (1991) A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 9: 1356–1361. doi: 10.1038/nbt1291-1356
[5]  Xiong C, Levis R, Shen P, Schlesinger S, Rice CM, et al. (1989) Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243: 1188–1191. doi: 10.1126/science.2922607
[6]  Davis NL, Willis LV, Smith JF, Johnston RE (1989) In vitro synthesis of infectious venezuelan equine encephalitis virus RNA from a cDNA clone: analysis of a viable deletion mutant. Virology 171: 189–204. doi: 10.1016/0042-6822(89)90526-6
[7]  Polo JM, Gardner JP, Ji Y, Belli BA, Driver DA, et al. (2000) Alphavirus DNA and particle replicons for vaccines and gene therapy. Dev Biol (Basel) 104: 181–185.
[8]  Lundstrom K, Ehrengruber MU (2003) Semliki Forest virus (SFV) vectors in neurobiology and gene therapy. Methods Mol Med 76: 503–523. doi: 10.1385/1-59259-304-6:503
[9]  Lundstrom K (2003) Alphavirus vectors for vaccine production and gene therapy. Expert Rev Vaccines 2: 447–459. doi: 10.1586/14760584.2.3.445
[10]  Durso RJ, Andjelic S, Gardner JP, Margitich DJ, Donovan GP, et al. (2007) A novel alphavirus vaccine encoding prostate-specific membrane antigen elicits potent cellular and humoral immune responses. Clin Cancer Res 13: 3999–4008. doi: 10.1158/1078-0432.ccr-06-2202
[11]  Leslie MC, Zhao YJ, Lachman LB, Hwu P, Wu GJ, et al. (2007) Immunization against MUC18/MCAM, a novel antigen that drives melanoma invasion and metastasis. Gene Ther 14: 316–323. doi: 10.1038/sj.gt.3302864
[12]  Moran TP, Burgents JE, Long B, Ferrer I, Jaffee EM, et al. (2007) Alphaviral vector-transduced dendritic cells are successful therapeutic vaccines against neu-overexpressing tumors in wild-type mice. Vaccine 25: 6604–6612. doi: 10.1016/j.vaccine.2007.06.058
[13]  Riezebos-Brilman A, Regts J, Chen M, Wilschut J, Daemen T (2009) Augmentation of alphavirus vector-induced human papilloma virus-specific immune and anti-tumour responses by co-expression of interleukin-12. Vaccine 27: 701–707. doi: 10.1016/j.vaccine.2008.11.032
[14]  Asselin-Paturel C, Lassau N, Guinebretiere JM, Zhang J, Gay F, et al. (1999) Transfer of the murine interleukin-12 gene in vivo by a Semliki Forest virus vector induces B16 tumor regression through inhibition of tumor blood vessel formation monitored by Doppler ultrasonography. Gene Ther 6: 606–615. doi: 10.1038/sj.gt.3300841
[15]  Lyons JA, Sheahan BJ, Galbraith SE, Mehra R, Atkins GJ, et al. (2007) Inhibition of angiogenesis by a Semliki Forest virus vector expressing VEGFR-2 reduces tumour growth and metastasis in mice. Gene Ther 14: 503–513. doi: 10.1038/sj.gt.3302889
[16]  Xiang R, Mizutani N, Luo Y, Chiodoni C, Zhou H, et al. (2005) A DNA vaccine targeting survivin combines apoptosis with suppression of angiogenesis in lung tumor eradication. Cancer Res 65: 553–561.
[17]  Zaffaroni N, Pennati M, Daidone MG (2005) Survivin as a target for new anticancer interventions. J Cell Mol Med 9: 360–372. doi: 10.1111/j.1582-4934.2005.tb00361.x
[18]  Schmitz M, Diestelkoetter P, Weigle B, Schmachtenberg F, Stevanovic S, et al. (2000) Generation of survivin-specific CD8+ T effector cells by dendritic cells pulsed with protein or selected peptides. Cancer Res 60: 4845–4849.
[19]  Hirohashi Y, Torigoe T, Maeda A, Nabeta Y, Kamiguchi K, et al. (2002) An HLA-A24-restricted cytotoxic T lymphocyte epitope of a tumor-associated protein, survivin. Clin Cancer Res 8: 1731–1739.
[20]  Otto K, Andersen MH, Eggert A, Keikavoussi P, Pedersen LO, et al. (2005) Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine 23: 884–889. doi: 10.1016/j.vaccine.2004.08.007
[21]  Terrazzini N, Hannesdottir S, Delves PJ, Lund T (2004) DNA immunization with plasmids expressing hCGbeta-chimeras. Vaccine 22: 2146–2153. doi: 10.1016/j.vaccine.2003.12.002
[22]  Moulton HM, Yoshihara PH, Mason DH, Iversen PL, Triozzi PL (2002) Active specific immunotherapy with a beta-human chorionic gonadotropin peptide vaccine in patients with metastatic colorectal cancer: antibody response is associated with improved survival. Clin Cancer Res 8: 2044–2051.
[23]  He LZ, Ramakrishna V, Connolly JE, Wang XT, Smith PA, et al. (2004) A novel human cancer vaccine elicits cellular responses to the tumor-associated antigen, human chorionic gonadotropin beta. Clin Cancer Res 10: 1920–1927. doi: 10.1158/1078-0432.ccr-03-0264
[24]  Yi H, Rong Y, Yankai Z, Wentao L, Hongxia Z, et al. (2006) Improved efficacy of DNA vaccination against breast cancer by boosting with the repeat beta-hCG C-terminal peptide carried by mycobacterial heat-shock protein HSP65. Vaccine 24: 2575–2584. doi: 10.1016/j.vaccine.2005.12.030
[25]  Boussiotis VA, Freeman GJ, Gribben JG, Nadler LM (1996) The role of B7-1/B7-2:CD28/CLTA-4 pathways in the prevention of anergy, induction of productive immunity and down-regulation of the immune response. Immunol Rev 153: 5–26. doi: 10.1111/j.1600-065x.1996.tb00918.x
[26]  Herold KC, Lu J, Rulifson I, Vezys V, Taub D, et al. (1997) Regulation of C-C chemokine production by murine T cells by CD28/B7 costimulation. J Immunol 159: 4150–4153.
[27]  Yu JS, Burwick JA, Dranoff G, Breakefield XO (1997) Gene therapy for metastatic brain tumors by vaccination with granulocyte-macrophage colony-stimulating factor-transduced tumor cells. Hum Gene Ther 8: 1065–1072. doi: 10.1089/hum.1997.8.9-1065
[28]  Nakazaki Y, Tani K, Lin ZT, Sumimoto H, Hibino H, et al. (1998) Vaccine effect of granulocyte-macrophage colony-stimulating factor or CD80 gene-transduced murine hematopoietic tumor cells and their cooperative enhancement of antitumor immunity. Gene Ther 5: 1355–1362. doi: 10.1038/sj.gt.3300726
[29]  Kass E, Parker J, Schlom J, Greiner JW (2000) Comparative studies of the effects of recombinant GM-CSF and GM-CSF administered via a poxvirus to enhance the concentration of antigen- presenting cells in regional lymph nodes. Cytokine 12: 960–971. doi: 10.1006/cyto.2000.0684
[30]  Jefferis R, Lund J, Pound JD (1998) IgG-Fc-mediated effector functions: molecular definition of interaction sites for effector ligands and the role of glycosylation. Immunol Rev 163: 59–76. doi: 10.1111/j.1600-065x.1998.tb01188.x
[31]  Ferrone CR, Perales MA, Goldberg SM, Somberg CJ, Hirschhorn-Cymerman D, et al. (2006) Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin Cancer Res 12: 5511–5519. doi: 10.1158/1078-0432.ccr-06-0979
[32]  Ikezawa H (2002) Glycosylphosphatidylinositol (GPI)-anchored proteins. Biol Pharm Bull 25: 409–417. doi: 10.1248/bpb.25.409
[33]  Sun X, Hodge LM, Jones HP, Tabor L, Simecka JW (2002) Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine 20: 1466–1474. doi: 10.1016/s0264-410x(01)00476-5
[34]  Sangiorgio V, Pitto M, Palestini P, Masserini M (2004) GPI-anchored proteins and lipid rafts. Ital J Biochem 53: 98–111.
[35]  Zhang L, Yan JQ, Wang Y, Xiao Y, Gao K, et al. (2011) [Construction of a replicative anti-tumor DNA vaccine PSCK-2PFcGB and its expression in vivo and in vitro]. Nan Fang Yi Ke Da Xue Xue Bao 31: 937–942.
[36]  Lundstrom K (2009) Alphaviruses in gene therapy. Viruses 1: 13–25. doi: 10.3390/v1010013
[37]  Reap EA, Dryga SA, Morris J, Rivers B, Norberg PK, et al. (2007) Cellular and humoral immune responses to alphavirus replicon vaccines expressing cytomegalovirus pp65, IE1, and gB proteins. Clin Vaccine Immunol 14: 748–755. doi: 10.1128/cvi.00037-07
[38]  Reap EA, Morris J, Dryga SA, Maughan M, Talarico T, et al. (2007) Development and preclinical evaluation of an alphavirus replicon particle vaccine for cytomegalovirus. Vaccine 25: 7441–7449. doi: 10.1016/j.vaccine.2007.08.016
[39]  Bernstein DI, Reap EA, Katen K, Watson A, Smith K, et al. (2009) Randomized, double-blind, Phase 1 trial of an alphavirus replicon vaccine for cytomegalovirus in CMV seronegative adult volunteers. Vaccine 28: 484–493. doi: 10.1016/j.vaccine.2009.09.135
[40]  Anderson RJ, Schneider J (2007) Plasmid DNA and viral vector-based vaccines for the treatment of cancer. Vaccine 25 Suppl 2B24–34. doi: 10.1016/j.vaccine.2007.05.030
[41]  Bergman PJ (2007) Anticancer vaccines. Vet Clin North Am Small Anim Pract 37: 1111–1119; vi–ii.
[42]  Everson RG, Graner MW, Gromeier M, Vredenburgh JJ, Desjardins A, et al. (2008) Immunotherapy against angiogenesis-associated targets: evidence and implications for the treatment of malignant glioma. Expert Rev Anticancer Ther 8: 717–732. doi: 10.1586/14737140.8.5.717
[43]  Loisel-Meyer S, Foley R, Medin JA (2008) Immuno-gene therapy approaches for cancer: from in vitro studies to clinical trials. Front Biosci 13: 3202–3214. doi: 10.2741/2921
[44]  Rice J, Ottensmeier CH, Stevenson FK (2008) DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 8: 108–120. doi: 10.1038/nrc2326
[45]  Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, et al. (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264: 961–965. doi: 10.1126/science.7513904
[46]  Cyster JG (1999) Chemokines and the homing of dendritic cells to the T cell areas of lymphoid organs. J Exp Med 189: 447–450. doi: 10.1084/jem.189.3.447
[47]  Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM, et al. (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2: 1096–1103. doi: 10.1038/nm1096-1096
[48]  Gabrilovich DI, Corak J, Ciernik IF, Kavanaugh D, Carbone DP (1997) Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin Cancer Res 3: 483–490.
[49]  Qin Z, Noffz G, Mohaupt M, Blankenstein T (1997) Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells. J Immunol 159: 770–776.
[50]  Haeffner-Cavaillon N, Klein M, Dorrington KJ (1979) Studies on the Fc gamma receptor of the murine macrophage-like cell line P388D1. I. The binding of homologous and heterologous immunoglobulin G1. J Immunol 123: 1905–1913.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133