Hepatitis C virus (HCV) is a major cause of chronic liver disease. However, little is known about the details of its assembly and secretion. Golgi-related proteins have been recently proven to have a key function in HCV secretion. Golgi protein 73 (GP73), a resident Golgi membrane protein, is a potential serum biomarker for the diagnosis of liver diseases and hepatocellular carcinoma. Previous studies have demonstrated the upregulation of GP73 in the liver samples and sera of HCV-infected patients. However, the function and regulatory mechanism of GP73 in HCV infection at the cellular level remain unknown. In this study, we examined the expression level of GP73 in HCV infected cells and its effect on HCV life cycle in cell culture systems. Both the protein expression and mRNA levels of GP73 significantly increased in HCV subgenomic replicon-harboring cells and HCV-infected cells, which imply that GP73 was upregulated by HCV infection. HCV production was significantly enhanced when GP73 was overexpressed, but dramatically inhibited when GP73 was silenced. However, the overexpression and knockdown of GP73 showed no evident effect on the entry, protein translation, RNA replication, and assembly of HCV, which indicates that GP73 enhanced the secretion process. Moreover, the coiled-coil domain of GP73 was required to increase HCV secretion. GP73 increased and interacted with apolipoprotein E, an identified host factor that assists in HCV secretion. These results demonstrate the critical function of GP73 in HCV secretion and provide new insights into the therapeutic design of antiviral strategies.
References
[1]
Leone N, Rizzetto M (2005) Natural history of hepatitis C virus infection: from chronic hepatitis to cirrhosis, to hepatocellular carcinoma. Minerva Gastroenterol Dietol 51: 31–46.
[2]
Suzuki T, Aizaki H, Murakami K, Shoji I, Wakita T (2007) Molecular biology of hepatitis C virus. J Gastroenterol 42: 411–423. doi: 10.1007/s00535-007-2030-3
[3]
Levrero M (2006) Viral hepatitis and liver cancer: the case of hepatitis C. . Oncogene 25: 3834–3847. doi: 10.1038/sj.onc.1209562
[4]
Alexopoulou A, Papatheodoridis GV (2012) Current progress in the treatment of chronic hepatitis C. . World J Gastroenterol 18: 6060–6069. doi: 10.3748/wjg.v18.i42.6060
[5]
Kato N (2001) Molecular virology of hepatitis C virus. Acta Med Okayama 55: 133–159.
[6]
Suzuki T, Ishii K, Aizaki H, Wakita T (2007) Hepatitis C viral life cycle. Adv Drug Deliv Rev 59: 1200–1212. doi: 10.1016/j.addr.2007.04.014
[7]
Lohmann V, Korner F, Koch J, Herian U, Theilmann L, et al. (1999) Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285: 110–113. doi: 10.1126/science.285.5424.110
[8]
Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, et al. (2005) Complete replication of hepatitis C virus in cell culture. Science 309: 623–626. doi: 10.1126/science.1114016
[9]
Ploss A, Evans MJ (2012) Hepatitis C virus host cell entry. Curr Opin Virol 2: 14–19. doi: 10.1016/j.coviro.2011.12.007
[10]
Rice CM (2011) New insights into HCV replication: potential antiviral targets. Top Antivir Med 19: 117–120.
[11]
Amako Y, Syed GH, Siddiqui A (2011) Protein kinase D negatively regulates hepatitis C virus secretion through phosphorylation of oxysterol-binding protein and ceramide transfer protein. J Biol Chem 286: 11265–11274. doi: 10.1074/jbc.m110.182097
[12]
Bishe B, Syed GH, Field SJ, Siddiqui A (2012) Role of phosphatidylinositol 4-phosphate (PI4P) and its binding protein GOLPH3 in hepatitis C virus secretion. J Biol Chem 287: 27637–27647. doi: 10.1074/jbc.m112.346569
[13]
Coller KE, Heaton NS, Berger KL, Cooper JD, Saunders JL, et al. (2012) Molecular determinants and dynamics of hepatitis C virus secretion. PLoS Pathog 8: e1002466. doi: 10.1371/journal.ppat.1002466
[14]
Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ (2002) Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology 35: 1431–1440. doi: 10.1053/jhep.2002.32525
[15]
Iftikhar R, Kladney RD, Havlioglu N, Schmitt-Graff A, Gusmirovic I, et al. (2004) Disease- and cell-specific expression of GP73 in human liver disease. Am J Gastroenterol 99: 1087–1095.
[16]
Riener MO, Stenner F, Liewen H, Soll C, Breitenstein S, et al. (2009) Golgi phosphoprotein 2 (GOLPH2) expression in liver tumors and its value as a serum marker in hepatocellular carcinomas. Hepatology 49: 1602–1609. doi: 10.1002/hep.22843
[17]
Kladney RD, Bulla GA, Guo L, Mason AL, Tollefson AE, et al. (2000) GP73, a novel Golgi-localized protein upregulated by viral infection. Gene 249: 53–65. doi: 10.1016/s0378-1119(00)00136-0
[18]
Norton PA, Comunale MA, Krakover J, Rodemich L, Pirog N, et al. (2008) N-linked glycosylation of the liver cancer biomarker GP73. J Cell Biochem 104: 136–149. doi: 10.1002/jcb.21610
[19]
Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, et al. (2005) GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol 43: 1007–1012. doi: 10.1016/j.jhep.2005.05.028
[20]
Gu Y, Chen W, Zhao Y, Chen L, Peng T (2009) Quantitative analysis of elevated serum Golgi protein-73 expression in patients with liver diseases. Ann Clin Biochem 46: 38–43. doi: 10.1258/acb.2008.008088
[21]
Ozkan H, Erdal H, Tutkak H, Karaeren Z, Yakut M, et al. (2011) Diagnostic and prognostic validity of Golgi protein 73 in hepatocellular carcinoma. Digestion 83: 83–88. doi: 10.1159/000320379
[22]
Malaguarnera G, Giordano M, Paladina I, Berretta M, Cappellani A, et al. (2010) Serum markers of hepatocellular carcinoma. Dig Dis Sci 55: 2744–2755. doi: 10.1007/s10620-010-1184-7
[23]
Gomaa AI, Khan SA, Leen EL, Waked I, Taylor-Robinson SD (2009) Diagnosis of hepatocellular carcinoma. World J Gastroenterol 15: 1301–1314.
[24]
Giannelli G, Antonaci S (2006) New frontiers in biomarkers for hepatocellular carcinoma. Dig Liver Dis 38: 854–859. doi: 10.1016/j.dld.2006.05.007
[25]
Hu L, Li L, Xie H, Gu Y, Peng T (2011) The Golgi Localization of GOLPH2 (GP73/GOLM1) Is Determined by the Transmembrane and Cytoplamic Sequences. PLoS ONE 6: e28207. doi: 10.1371/journal.pone.0028207
[26]
Kim HJ, Lv D, Zhang Y, Peng T, Ma X (2012) Golgi phosphoprotein 2 in physiology and in diseases. Cell Biosci 2: 31. doi: 10.1186/2045-3701-2-31
[27]
Zhou Y, Li L, Hu L, Peng T (2011) Golgi phosphoprotein 2 (GOLPH2/GP73/GOLM1) interacts with secretory clusterin. Mol Biol Rep 38: 1457–1462. doi: 10.1007/s11033-010-0251-7
[28]
Moradpour D, Evans MJ, Gosert R, Yuan Z, Blum HE, et al. (2004) Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J Virol 78: 7400–7409. doi: 10.1128/jvi.78.14.7400-7409.2004
[29]
Bartosch B, Dubuisson J, Cosset FL (2003) Infectious Hepatitis C Virus Pseudo-particles Containing Functional E1-E2 Envelope Protein Complexes. Journal of Experimental Medicine 197: 633–642. doi: 10.1084/jem.20021756
[30]
Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, et al. (2005) Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med 11: 791–796. doi: 10.1038/nm1268
[31]
Li X, Jiang H, Qu L, Yao W, Cai H, et al. (2014) Hepatocyte Nuclear Factor 4alpha and Downstream Secreted Phospholipase A2 GXIIB Regulate Production of Infectious Hepatitis C Virus. J Virol 88: 612–627. doi: 10.1128/jvi.02068-13
[32]
Jiang J, Luo G (2009) Apolipoprotein E but not B is required for the formation of infectious hepatitis C virus particles. J Virol 83: 12680–12691. doi: 10.1128/jvi.01476-09
[33]
Chang KS, Jiang J, Cai Z, Luo G (2007) Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture. J Virol 81: 13783–13793. doi: 10.1128/jvi.01091-07
[34]
Hishiki T, Shimizu Y, Tobita R, Sugiyama K, Ogawa K, et al. (2010) Infectivity of hepatitis C virus is influenced by association with apolipoprotein E isoforms. J Virol 84: 12048–12057. doi: 10.1128/jvi.01063-10
[35]
Mao Y, Yang H, Xu H, Lu X, Sang X, et al.. (2010) Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut.
[36]
Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, et al. (2005) Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A 102: 9294–9299. doi: 10.1073/pnas.0503596102
[37]
Blight KJ, McKeating JA, Rice CM (2002) Highly Permissive Cell Lines for Subgenomic and Genomic Hepatitis C Virus RNA Replication. J Virol 76: 13001–13014. doi: 10.1128/jvi.76.24.13001-13014.2002
[38]
Barrera JM, Bruguera M, Ercilla MG, Gil C, Celis R, et al. (1995) Persistent hepatitis C viremia after acute self-limiting posttransfusion hepatitis C. . Hepatology 21: 639–644. doi: 10.1002/hep.1840210306
[39]
Zhong J, Gastaminza P, Chung J, Stamataki Z, Isogawa M, et al. (2006) Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J Virol 80: 11082–11093. doi: 10.1128/jvi.01307-06
[40]
Bishe B, Syed G, Siddiqui A (2012) Phosphoinositides in the hepatitis C virus life cycle. Viruses 4: 2340–2358. doi: 10.3390/v4102340
[41]
Sundaram M, Yao Z (2012) Intrahepatic role of exchangeable apolipoproteins in lipoprotein assembly and secretion. Arterioscler Thromb Vasc Biol 32: 1073–1078. doi: 10.1161/atvbaha.111.241455
[42]
Popescu CI, Dubuisson J (2010) Role of lipid metabolism in hepatitis C virus assembly and entry. Biol Cell 102: 63–74. doi: 10.1042/bc20090125
[43]
Huang H, Sun F, Owen DM, Li W, Chen Y, et al. (2007) Hepatitis C virus production by human hepatocytes dependent on assembly and secretion of very low-density lipoproteins. Proc Natl Acad Sci U S A 104: 5848–5853. doi: 10.1073/pnas.0700760104
[44]
Gastaminza P, Cheng G, Wieland S, Zhong J, Liao W, et al. (2008) Cellular determinants of hepatitis C virus assembly, maturation, degradation, and secretion. J Virol 82: 2120–2129. doi: 10.1128/jvi.02053-07
[45]
Nahmias Y, Goldwasser J, Casali M, van Poll D, Wakita T, et al. (2008) Apolipoprotein B-dependent hepatitis C virus secretion is inhibited by the grapefruit flavonoid naringenin. Hepatology 47: 1437–1445. doi: 10.1002/hep.22197
[46]
Benga WJ, Krieger SE, Dimitrova M, Zeisel MB, Parnot M, et al. (2010) Apolipoprotein E interacts with hepatitis C virus nonstructural protein 5A and determines assembly of infectious particles. Hepatology 51: 43–53. doi: 10.1002/hep.23278
[47]
Cun W, Jiang J, Luo G (2010) The C-terminal alpha-helix domain of apolipoprotein E is required for interaction with nonstructural protein 5A and assembly of hepatitis C virus. J Virol 84: 11532–11541. doi: 10.1128/jvi.01021-10
[48]
Owen DM, Huang H, Ye J, Gale M Jr (2009) Apolipoprotein E on hepatitis C virion facilitates infection through interaction with low-density lipoprotein receptor. Virology 394: 99–108. doi: 10.1016/j.virol.2009.08.037
[49]
Saunders AM, Strittmatter WJ, Schmechel D, George-Hyslop PH, Pericak-Vance MA, et al. (1993) Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 43: 1467–1472. doi: 10.1212/wnl.43.8.1467
[50]
Zlokovic BV (2013) Cerebrovascular effects of apolipoprotein E: implications for Alzheimer disease. JAMA Neurol 70: 440–444. doi: 10.1001/jamaneurol.2013.2152
[51]
Li H, Wetten S, Li L, St Jean PL, Upmanyu R, et al. (2008) Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. Arch Neurol 65: 45–53. doi: 10.1001/archneurol.2007.3
[52]
Lin K, Tang M, Han H, Guo Y, Lin Y, et al. (2010) Association between the polymorphisms of CALHM1 and GOLPH2 genes and Alzheimer's disease. Psychiatr Genet 20: 190. doi: 10.1097/ypg.0b013e32833a21cf
[53]
Yuan Q, Chu C, Jia J (2012) Association studies of 19 candidate SNPs with sporadic Alzheimer's disease in the North Chinese Han population. Neurol Sci 33: 1021–1028. doi: 10.1007/s10072-011-0881-0
[54]
Inkster B, Rao AW, Ridler K, Filippini N, Whitcher B, et al. (2012) Genetic variation in GOLM1 and prefrontal cortical volume in Alzheimer's disease. Neurobiol Aging 33: 457–465. doi: 10.1016/j.neurobiolaging.2010.04.018