The extracellular matrix of the immature and mature skeleton is key to the development and function of the skeletal system. Notwithstanding its importance, it has been technically challenging to obtain a comprehensive picture of the changes in skeletal composition throughout the development of bone and cartilage. In this study, we analyzed the extracellular protein composition of the zebrafish skeleton using a mass spectrometry-based approach, resulting in the identification of 262 extracellular proteins, including most of the bone and cartilage specific proteins previously reported in mammalian species. By comparing these extracellular proteins at larval, juvenile, and adult developmental stages, 123 proteins were found that differed significantly in abundance during development. Proteins with a reported function in bone formation increased in abundance during zebrafish development, while analysis of the cartilage matrix revealed major compositional changes during development. The protein list includes ligands and inhibitors of various signaling pathways implicated in skeletogenesis such as the Int/Wingless as well as the insulin-like growth factor signaling pathways. This first proteomic analysis of zebrafish skeletal development reveals that the zebrafish skeleton is comparable with the skeleton of other vertebrate species including mammals. In addition, our study reveals 6 novel proteins that have never been related to vertebrate skeletogenesis and shows a surprisingly large number of differences in the cartilage and bone proteome between the head, axis and caudal fin regions. Our study provides the first systematic assessment of bone and cartilage protein composition in an entire vertebrate at different stages of development.
References
[1]
Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M (2008) Endochondral ossification: How cartilage is converted into bone in the developing skeleton. International Journal of Biochemistry & Cell Biology 40: 46–62. doi: 10.1016/j.biocel.2007.06.009
[2]
Kronenberg HM (2003) Developmental regulation of the growth plate. Nature 423: 332–336. doi: 10.1038/nature01657
[3]
Sophia Fox AJ, Bedi A, Rodeo SA (2009) The basic science of articular cartilage: structure, composition, and function. Sports Health 1: 461–468. doi: 10.1177/1941738109350438
[4]
Weiner S, Wagner HD (1998) The material bone: Structure mechanical function relations. Annual Review of Materials Science 28: 271–298. doi: 10.1146/annurev.matsci.28.1.271
[5]
Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporosis International 17: 319–336. doi: 10.1007/s00198-005-2035-9
[6]
Deshpande AS, Beniash E (2008) Bio-inspired Synthesis of Mineralized Collagen Fibrils. Cryst Growth Des 8: 3084–3090. doi: 10.1021/cg800252f
[7]
Nunez C, Esteve-Nunez A, Giometti C, Tollaksen S, Khare T, et al. (2006) DNA microarray and proteomic analyses of the RpoS regulon in Geobacter sulfurreducens. Journal of Bacteriology 188: 2792–2800. doi: 10.1128/jb.188.8.2792-2800.2006
[8]
Anderson L, Seilhamer J (1997) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18: 533–537. doi: 10.1002/elps.1150180333
[9]
Hegde PS, White IR, Debouck C (2003) Interplay of transcriptomics and proteomics. Current Opinion in Biotechnology 14: 647–651. doi: 10.1016/j.copbio.2003.10.006
[10]
Karve TM, Cheema AK (2011) Small changes huge impact: the role of protein posttranslational modifications in cellular homeostasis and disease. J Amino Acids 2011: 207691. doi: 10.4061/2011/207691
[11]
Ahrens CH, Brunner E, Qeli E, Basler K, Aebersold R (2010) Generating and navigating proteome maps using mass spectrometry. Nature Reviews Molecular Cell Biology 11: 789–801. doi: 10.1038/nrm2973
[12]
Zhu WH, Smith JW, Huang CM (2010) Mass Spectrometry-Based Label-Free Quantitative Proteomics. Journal of Biomedicine and Biotechnology.
[13]
Lammi MJ, Hayrinen J, Mahonen A (2006) Proteomic analysis of cartilage- and bone-associated samples. Electrophoresis 27: 2687–2701. doi: 10.1002/elps.200600004
[14]
Spoorendonk KM, Hammond CL, Huitema LFA, Vanoevelen J, Schulte-Merker S (2010) Zebrafish as a unique model system in bone research: the power of genetics and in vivo imaging. Journal of Applied Ichthyology 26: 219–224. doi: 10.1111/j.1439-0426.2010.01409.x
[15]
Mackay E, Apschner A, Schulte-Merker S (2013) A Bone To Pick with Zebrafish. BoneKey in press.
[16]
Flores MV, Tsang VWK, Hu WJ, Kalev-Zylinska M, Postlethwait J, et al. (2004) Duplicate zebrafish runx2 orthologues are expressed in developing skeletal elements. Gene Expression Patterns 4: 573–581. doi: 10.1016/j.modgep.2004.01.016
[17]
Li N, Felber K, Elks P, Croucher P, Roehl HH (2009) Tracking Gene Expression During Zebrafish Osteoblast Differentiation. Developmental Dynamics 238: 459–466. doi: 10.1002/dvdy.21838
[18]
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, et al. (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496: 498–503.
[19]
Bird NC, Mabee PM (2003) Developmental morphology of the axial skeleton of the zebrafish, Danio rerio (Ostariophysi : Cyprinidae). Developmental Dynamics 228: 337–357. doi: 10.1002/dvdy.10387
[20]
Spoorendonk KM, Peterson-Maduro J, Renn J, Trowe T, Kranenbarg S, et al. (2008) Retinoic acid and Cyp26b1 are critical regulators of osteogenesis in the axial skeleton. Development 135: 3765–3774. doi: 10.1242/dev.024034
[21]
Jiang XG, Ye ML, Jiang XN, Liu GP, Feng S, et al. (2007) Method development of efficient protein extraction in bone tissue for proteome analysis. Journal of Proteome Research 6: 2287–2294. doi: 10.1021/pr070056t
[22]
Manza LL, Stamer SL, Ham AJL, Codreanu SG, Liebler DC (2005) Sample preparation and digestion for proteomic analyses using spin filters. Proteomics 5: 1742–1745. doi: 10.1002/pmic.200401063
[23]
Wisniewski JR, Mann M (2009) Spin filter-based sample preparation for shotgun proteomics Reply. Nature Methods 6: 785–786. doi: 10.1038/nmeth1109-785b
[24]
Bhatia VN, Perlman DH, Costello CE, McComb ME (2009) Software Tool for Researching Annotations of Proteins: Open-Source Protein Annotation Software with Data Visualization. Analytical Chemistry 81: 9819–9823. doi: 10.1021/ac901335x
[25]
Sprague J, Clements D, Conlin T, Edwards P, Frazer K, et al. (2003) The Zebrafish Information Network (ZFIN): the zebrafish model organism database. Nucleic Acids Research 31: 241–243. doi: 10.1093/nar/gkg027
[26]
Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132: 365–386. doi: 10.1385/1-59259-192-2:365
[27]
Smith A, Zhang J, Guay D, Quint E, Johnson A, et al. (2008) Gene expression analysis on sections of zebrafish regenerating fins reveals limitations in the whole-mount in situ hybridization method. Dev Dyn 237: 417–425. doi: 10.1002/dvdy.21417
[28]
Schulte-Merker S (2002) Looking at embryos. Zebrafish - A practical approach. pp. 39–58.
[29]
Wilson R, Norris EL, Brachvogel B, Angelucci C, Zivkovic S, et al.. (2012) Changes in the Chondrocyte and Extracellular Matrix Proteome during Post-natal Mouse Cartilage Development. Molecular & Cellular Proteomics 11.
[30]
Onnerfjord P, Khabut A, Reinholt FP, Svensson O, Heinegard D (2012) Quantitative Proteomic Analysis of Eight Cartilaginous Tissues Reveals Characteristic Differences as well as Similarities between Subgroups. Journal of Biological Chemistry 287: 18913–18924. doi: 10.1074/jbc.m111.298968
[31]
Schreiweis MA, Butler JP, Kulkarni NH, Knierman MD, Higgs RE, et al. (2007) A proteomic analysis of adult rat bone reveals the presence of cartilage/chondrocyte markers. Journal of Cellular Biochemistry 101: 466–476. doi: 10.1002/jcb.21196
[32]
Alves RDAM, Demmers JAA, Bezstarosti K, van der Eerden BCJ, Verhaar JAN, et al. (2011) Unraveling the Human Bone Microenvironment beyond the Classical Extracellular Matrix Proteins: A Human Bone Protein Library. Journal of Proteome Research 10: 4725–4733. doi: 10.1021/pr200522n
[33]
Ashton BA, Hohling HJ, Triffitt JT (1976) Plasma-Proteins Present in Human Cortical Bone - Enrichment of Alpha-2hs-Glycoprotein. Calcif Tissue Res 22: 27–33. doi: 10.1007/bf02010343
[34]
Triffitt JT, Gebauer U, Ashton BA, Owen ME, Reynolds JJ (1976) Origin of Plasma Alpha-2 Hs-Glycoprotein and Its Accumulation in Bone. Nature 262: 226–227. doi: 10.1038/262226a0
[35]
Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342. doi: 10.1038/nature10098
[36]
Timpl R, Sasaki T, Kostka G, Chu ML (2003) Fibulins: A versatile family of extracellular matrix proteins. Nature Reviews Molecular Cell Biology 4: 479–489. doi: 10.1038/nrm1130
[37]
Quondamatteo F (2002) Assembly, stability and integrity of basement membranes in vivo. Histochemical Journal 34: 369–381. doi: 10.1023/a:1023675619251
[38]
Kvist AJ, Nystrom A, Hultenby K, Sasaki T, Talts JF, et al. (2008) The major basement membrane components localize to the chondrocyte pericellular matrix - A cartilage basement membrane equivalent? Matrix Biology 27: 22–33. doi: 10.1016/j.matbio.2007.07.007
[39]
Huitema LFA, Apschner A, Logister I, Spoorendonk KM, Bussmann J, et al. (2012) Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proceedings of the National Academy of Sciences of the United States of America 109: 21372–21377. doi: 10.1073/pnas.1214231110
[40]
Takahashi S, Reddy SV, Chirgwin JM, Devlin R, Haipek C, et al. (1994) Cloning and Identification of Annexin-Ii as an Autocrine/Paracrine Factor That Increases Osteoclast Formation and Bone-Resorption. Journal of Biological Chemistry 269: 28696–28701.
[41]
Lu C, Wan Y, Cao JJ, Zhu XM, Yu J, et al. (2013) Wnt-mediated reciprocal regulation between cartilage and bone development during endochondral ossification. Bone 53: 566–574. doi: 10.1016/j.bone.2012.12.016
[42]
Enomoto-Iwamoto M, Kitagaki J, Koyama E, Tamamura Y, Wu CS, et al. (2002) The Wnt antagonist Frzb-1 regulates chondrocyte maturation and long bone development during limb skeletogenesis. Dev Biol 251: 142–156. doi: 10.1006/dbio.2002.0802
[43]
Lee C, Bongcam-Rudloff E, Sollner C, Jahnen-Dechent W, Claesson-Welsh L (2009) Type 3 cystatins; fetuins, kininogen and histidine-rich glycoprotein. Frontiers in Bioscience 14: 2911–2922. doi: 10.2741/3422
[44]
Sintuu C, Murray SS, Behnam K, Simon R, Jawien J, et al. (2008) Full-length bovine spp24 [spp24 (24-203)] inhibits BMP-2 induced bone formation. Journal of Orthopaedic Research 26: 753–758. doi: 10.1002/jor.20580
[45]
Graham JR, Chamberland A, Lin Q, Li XJ, Dai D, et al. (2013) Serine Protease HTRA1 Antagonizes Transforming Growth Factor-beta Signaling by Cleaving Its Receptors and Loss of HTRA1 In Vivo Enhances Bone Formation. PLoS One 8: e74094. doi: 10.1371/journal.pone.0074094
[46]
Hou J, Clemmons DR, Smeekens S (2005) Expression and characterization of a serine protease that preferentially cleaves insulin-like growth factor binding protein-5. Journal of Cellular Biochemistry 94: 470–484. doi: 10.1002/jcb.20328
[47]
Nishino J, Yamashita K, Hashiguchi H, Fujii H, Shimazaki T, et al. (2004) Meteorin: a secreted protein that regulates glial cell differentiation and promotes axonal extension. EMBO J 23: 1998–2008. doi: 10.1038/sj.emboj.7600202
[48]
Zhang H, Marshall KW, Tang H, Hwang DM, Lee M, et al. (2003) Profiling genes expressed in human fetal cartilage using 13,155 expressed sequence tags. Osteoarthritis and Cartilage 11: 309–319. doi: 10.1016/s1063-4584(03)00032-3
[49]
Kim T, Kim K, Lee SH, So HS, Lee J, et al. (2009) Identification of LRRc17 as a Negative Regulator of Receptor Activator of NF-kappa B Ligand (RANKL)-induced Osteoclast Differentiation. Journal of Biological Chemistry 284: 15308–15316. doi: 10.1074/jbc.m807722200
[50]
Yamada Y, Ando F, Niino N, Miki T, Shimokata H (2003) Association of polymorphisms of paraoxonase 1 and 2 genes, alone or in combination, with bone mineral density in community-dwelling Japanese. Journal of Human Genetics 48: 469–475. doi: 10.1007/s10038-003-0063-x
[51]
Brellier F, Martina E, Chiquet M, Ferralli J, van der Heyden M, et al. (2012) The adhesion modulating properties of tenascin-W. Int J Biol Sci 8: 187–194. doi: 10.7150/ijbs.8.187
[52]
Mohan S, Farley JR, Baylink DJ (1995) Age-related changes in IGFBP-4 and IGFBP-5 levels in human serum and bone: implications for bone loss with aging. Prog Growth Factor Res 6: 465–473. doi: 10.1016/0955-2235(95)00027-5
[53]
Andress DL (2001) IGF-binding protein-5 stimulates osteoblast activity and bone accretion in ovariectomized mice. American Journal of Physiology-Endocrinology and Metabolism 281: E283–E288.
[54]
Erlebacher A, Derynck R (1996) Increased expression of TGF-beta 2 in osteoblasts results in an osteoporosis-like phenotype. Journal of Cell Biology 132: 195–210. doi: 10.1083/jcb.132.1.195
[55]
Balooch G, Balooch M, Nalla RK, Schilling S, Filvaroff EH, et al. (2005) TGF-beta regulates the mechanical properties and composition of bone matrix. Proceedings of the National Academy of Sciences of the United States of America 102: 18813–18818. doi: 10.1073/pnas.0507417102
[56]
Fitzgerald J, Rich C, Zhou FH, Hansen U (2008) Three novel collagen VI chains, alpha 4(VI), alpha 5(VI), and alpha 6(VI). Journal of Biological Chemistry 283: 20170–20180. doi: 10.1074/jbc.m710139200
[57]
Cerda J, Grund C, Franke WW, Brand M (2002) Molecular characterization of Calymmin, a novel notochord sheath-associated extracellular matrix protein in the zebrafish embryo. Dev Dyn 224: 200–209. doi: 10.1002/dvdy.10101
[58]
Bernardo BC, Belluoccio D, Rowley L, Little CB, Hansen U, et al. (2011) Cartilage Intermediate Layer Protein 2 (CILP-2) Is Expressed in Articular and Meniscal Cartilage and Down-regulated in Experimental Osteoarthritis. Journal of Biological Chemistry 286: 37758–37767. doi: 10.1074/jbc.m111.248039
[59]
James CG, Appleton CTG, Ulici V, Underhill TM, Beier F (2005) Microarray analyses of gene expression during chondrocyte differentiation identifies novel regulators of hypertrophy. Mol Biol Cell 16: 5316–5333. doi: 10.1091/mbc.e05-01-0084
[60]
van Gool SA, Emons JAM, Leijten JCH, Decker E, Sticht C, et al.. (2012) Fetal Mesenchymal Stromal Cells Differentiating towards Chondrocytes Acquire a Gene Expression Profile Resembling Human Growth Plate Cartilage. PLoS One 7.
[61]
Tocharus J, Tsuchiya A, Kajikawa M, Ueta Y, Oka C, et al. (2004) Developmentally regulated expression of mouse HtrA3 and its role as an inhibitor of TGF-beta signaling. Development Growth & Differentiation 46: 257–274. doi: 10.1111/j.1440-169x.2004.00743.x
[62]
Tiaden AN, Breiden M, Mirsaidi A, Weber FA, Bahrenberg G, et al. (2012) Human Serine Protease HTRA1 Positively Regulates Osteogenesis of Human Bone Marrow-derived Mesenchymal Stem Cells and Mineralization of Differentiating Bone-forming Cells Through the Modulation of Extracellular Matrix Protein. Stem Cells 30: 2271–2282. doi: 10.1002/stem.1190
[63]
Tsuchiya A, Yano M, Tocharus J, Kojima H, Fukumoto M, et al. (2005) Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 37: 323–336. doi: 10.1016/j.bone.2005.03.015
[64]
Inada M, Wang YM, Byrne MH, Rahman MU, Miyaura C, et al. (2004) Critical roles for collagenase-3 (Mmp13) in development of growth and in endochondral plate cartilage ossification. Proceedings of the National Academy of Sciences of the United States of America 101: 17192–17197. doi: 10.1073/pnas.0407788101
[65]
Nakamura H, Sato G, Hirata A, Yamamoto T (2004) Immunolocalization of matrix metalloproteinase-13 on bone surface under osteoclasts in rat tibia. Bone 34: 48–56. doi: 10.1016/j.bone.2003.09.001
[66]
Singh SK, Lakshmi MG, Saxena S, Swamy CV, Idris MM (2011) Proteome profile of zebrafish caudal fin based on one-dimensional gel electrophoresis LCMS/MS and two-dimensional gel electrophoresis MALDI MS/MS analysis. J Sep Sci 34: 225–232. doi: 10.1002/jssc.201000626
[67]
LeClair EE, Mui SR, Huang A, Topczewska JM, Topczewski J (2009) Craniofacial Skeletal Defects of Adult Zebrafish glypican 4 (knypek) Mutants. Developmental Dynamics 238: 2550–2563. doi: 10.1002/dvdy.22086
[68]
Nagayama M, Iwamoto M, Hargett A, Kamiya N, Tamamura Y, et al. (2008) Wnt/beta-catenin signaling regulates cranial base development and growth. Journal of Dental Research 87: 244–249. doi: 10.1177/154405910808700309
[69]
Topczewski J, Sepich DS, Myers DC, Walker C, Amores A, et al. (2001) The zebrafish glypican knypek controls cell polarity during gastrulation movements of convergent extension. Developmental Cell 1: 251–264. doi: 10.1016/s1534-5807(01)00005-3
[70]
Nusse R, Varmus H (2012) Three decades of Wnts: a personal perspective on how a scientific field developed. Embo Journal 31: 2670–2684. doi: 10.1038/emboj.2012.146
[71]
Bikle DD, Wang Y (2012) Insulin like growth factor-I: a critical mediator of the skeletal response to parathyroid hormone. Curr Mol Pharmacol 5: 135–142. doi: 10.2174/1874467211205020135
[72]
Tahimic CG, Wang Y, Bikle DD (2013) Anabolic effects of IGF-1 signaling on the skeleton. Front Endocrinol (Lausanne) 4: 6. doi: 10.3389/fendo.2013.00006
[73]
Peruzzi B, Cappariello A, Del Fattore A, Rucci N, De Benedetti F, et al.. (2012) c-Src and IL-6 inhibit osteoblast differentiation and integrate IGFBP5 signalling. Nature Communications 3.
[74]
Stickens D, Behonick DJ, Ortega N, Heyer B, Hartenstein B, et al. (2004) Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development 131: 5883–5895. doi: 10.1242/dev.01461
[75]
Chatani M, Takano Y, Kudo A (2011) Osteoclasts in bone modeling, as revealed by in vivo imaging, are essential for organogenesis in fish. Dev Biol 360: 96–109. doi: 10.1016/j.ydbio.2011.09.013
[76]
Rotllant J, Liu D, Yan YL, Postlethwait JH, Westerfield M, et al. (2008) Sparc (Osteonectin) functions in morphogenesis of the pharyngeal skeleton and inner ear. Matrix Biology 27: 561–572. doi: 10.1016/j.matbio.2008.03.001