[1] | Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, et al.. (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al., editors, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
|
[2] | Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, et al.. (2007) Couplings between changes in the climate system and biogeochemistry. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, et al., editors, Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
|
[3] | Wada E, Ueda S (1996) Carbon nitrogen and oxygen isotope ratios of CH4 and N2O on soil ecosystems. In: Boutton TW, Yamasaki SI, editors.Mass Spectrometry of Soils.New York: Marcel Dekker. pp. 177–204.
|
[4] | Aravena R, Mayer B (2010) Isotopes and processes in the nitrogen and sulfur cycles. In: Environmental isotopes in biodegradation and bioremediation. Boca Raton, FL: Lewis Publishers. pp. 203–246.
|
[5] | Baulch HM, Schiff SL, Thuss SJ, Dillon PJ (2011) Isotopic character of nitrous oxide emitted from streams. Environ Sci Technol 45: 4682–4688. doi: 10.1021/es104116a
|
[6] | Park S, Pérez T, Boering KA, Trumbore SE, Gil J, et al. (2011) Can N2O stable isotopes and isotopomers be useful tools to characterize sources and microbial pathways of N2O production and consumption in tropical soils? Global Biogeochem Cycles 25: GB1001. doi: 10.1029/2009gb003615
|
[7] | Bol R, Toyoda S, Yamulki S, Hawkins JMB, Cardenas LM, et al. (2003) Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser application. Rapid Commun Mass Spectrom 17: 2550–2556. doi: 10.1002/rcm.1223
|
[8] | Mandernack KW, Rahn T, Kinney C, Wahlen M (2000) The biogeochemical controls of the δ15N and δ18O of N2O produced in landfill cover soils. J Geophys Res Atmos 105: 17709–17720. doi: 10.1029/2000jd900055
|
[9] | Pérez T, Trumbore SE, Tyler SC, Matson PA, Ortiz-Monasterio I, et al. (2001) Identifying the agricultural imprint on the global N2O budget using stable isotopes. J Geophys Res Atmos 106: 9869–9878. doi: 10.1029/2000jd900809
|
[10] | Snider DM, Schiff SL, Spoelstra J (2009) 15N /14N and 18O/16O stable isotope ratios of nitrous oxide produced during denitrification in temperate forest soils. Geochim Cosmochim Acta 73: 877–888. doi: 10.1016/j.gca.2008.11.004
|
[11] | Snider DM, Venkiteswaran JJ, Schiff SL, Spoelstra J (2012) Deciphering the oxygen isotope composition of nitrous oxide produced by nitrification. Glob Chang Biol 18: 356–370. doi: 10.1111/j.1365-2486.2011.02547.x
|
[12] | Beaulieu JJ, Shuster WD, Rebholz JA (2010) Nitrous oxide emissions from a large, impounded river: The Ohio River. Environ Sci Technol 44: 7527–7533. doi: 10.1021/es1016735
|
[13] | Beaulieu JJ, Tank JL, Hamilton SK, Wollheim WM, Hall RO Jr, et al. (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci USA 108: 214–219. doi: 10.1073/pnas.1011464108
|
[14] | Dore JE, Popp BN, Karl DM, Sansone FJ (1998) A large source of atmospheric nitrous oxide from subtropical north pacific surface waters. Nature 396: 63–66.
|
[15] | Kim KR, Craig H (1990) Two-isotope characterization of N2O in the Pacific Ocean and constraints on its origin in deep water. Nature 347: 58–61. doi: 10.1038/347058a0
|
[16] | Naqvi S, Yoshinari T, Jayakumar D, Altabet M, Narvekar P, et al. (1998) Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea. Nature 394: 462–464. doi: 10.1038/28828
|
[17] | Priscu JC, Christner BC, Dore JE, Westley MB, Popp BN, et al. (2008) Supersaturated N2O in a perenniallyice-covered Antarctic lake: Molecular and stable isotopic evidence for a biogeochemical relict. Limnol Oceanogr 53: 2439–2450. doi: 10.4319/lo.2008.53.6.2439
|
[18] | Yoshinari T, Altabet M, Naqvi S, Codispoti L, Jayakumar A, et al. (1997) Nitrogen and oxygen isotopic composition of N2O from suboxic waters of the eastern tropical north pacific and the arabian sea–measurement by continuous-ow isotope-ratio monitoring. Mar Chem 56: 253–264. doi: 10.1016/s0304-4203(96)00073-4
|
[19] | Kroeze C, Dumont E, Seitzinger SP (2005) New estimates of global emissions of N2O from rivers and estuaries. Environ Sci 2: 159–165. doi: 10.1080/15693430500384671
|
[20] | Boontanon N, Ueda S, Kanatharana P, Wada E (2000) Intramolecular stable isotope ratios of N2O in the tropical swamp forest in Thailand. Naturwissenschaften 87: 188–192. doi: 10.1007/s001140050701
|
[21] | Toyoda S, Iwai H, Koba K, Yoshida N (2009) Isotopomeric analysis of N2O dissolved in a river in the tokyo metropolitan area. Rapid Commun Mass Spectrom 23: 809–821. doi: 10.1002/rcm.3945
|
[22] | Inoue HY, Mook WG (1994) Equilibrium and kinetic nitrogen and oxygen isotope fractionations between dissolved and gaseous N2O. ChemGeol 113: 135–148. doi: 10.1016/0009-2541(94)90009-4
|
[23] | Brenninkmeijer CAM, Rckmann T (1999) Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragmention analysis. Rapid Commun Mass Spectrom 13: 2028–2033. doi: 10.1002/(sici)1097-0231(19991030)13:20<2028::aid-rcm751>3.0.co;2-j
|
[24] | Sutka RL, Ostrom N, Ostrom P, Breznak J, Gandhi H, et al. (2006) Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances. Appl Environ Microbiol 72: 638–644. doi: 10.1128/aem.72.1.638-644.2006
|
[25] | Toyoda S, Yoshida N (1999) Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer. Anal Chem 71: 4711–4718. doi: 10.1021/ac9904563
|
[26] | R?ckmann T, Kaiser J, Brenninkmeijer CAM, Brand WA (2003) Gas chromatography/isotoperatio mass spectrometry method for high-precision position-dependent 15N and 18O measurements of atmospheric nitrous oxide. Rapid Commun Mass Spectrom 17: 1897–1908. doi: 10.1002/rcm.1132
|
[27] | Venkiteswaran JJ, Wassenaar LI, Schiff SL (2007) Dynamics of dissolved oxygen isotopic ratios: a transient model to quantify primary production, community respiration, and air–water exchange in aquatic ecosystems. Oecologia 153: 385–398. doi: 10.1007/s00442-007-0744-9
|
[28] | Wahlen M, Yoshinari T (1985) Oxygen isotope ratios in N2O from different environments. Nature 313: 780–782. doi: 10.1038/313780a0
|
[29] | Zafiriou OC (1990) Laughing gas from leaky pipes. Nature 347: 15–16. doi: 10.1038/347015a0
|
[30] | Westley MB, Yamagishi H, Popp BN, Yoshida N (2006) Nitrous oxide cycling in the black sea inferred from stable isotope and isotopomer distributions. Deep Sea Res Part II 53: 1802–1816. doi: 10.1016/j.dsr2.2006.03.012
|
[31] | Well R, Eschenbach W, Flessa H, von der Heide C, Weymann D (2012) Are dual isotope and isotopomer ratios of N2O useful indicators for N2O turnover during denitrification in nitratecontaminated aquifers? Geochim Cosmochim Acta 90: 265–282. doi: 10.1016/j.gca.2012.04.045
|
[32] | An S, Joye SB (2001) Enhancement of coupled nitrification-denitrification by benthic photosynthesis in shallow estuarine sediments. Limnol Oceanogr 46: 62–74. doi: 10.4319/lo.2001.46.1.0062
|
[33] | Clough TJ, Buckthought LE, Kelliher FM, Sherlock RR (2007) Diurnal uctuations of dissolved nitrous oxide (N2O) concentrations and estimates of N2O emissions from a spring-fed river: implications for IPCC methodology. Glob Chang Biol 13: 1016–1027. doi: 10.1111/j.1365-2486.2007.01337.x
|
[34] | Laursen AE, Seitzinger SP (2004) Diurnal patterns of denitrification, oxygen consumption and nitrous oxide production in rivers measured at the whole-reach scale. Freshwat Biol 49: 1448–1458. doi: 10.1111/j.1365-2427.2004.01280.x
|
[35] | Lorenzen J, Larsen LH, Kjr T, Revsbech NP (1998) Biosensor determination of the microscale distribution of nitrate, nitrate assimilation, nitrification, and denitrification in a diatom-inhabited freshwater sediment. Appl Environ Microbiol 64: 3264–3269.
|
[36] | Rosamond MS, Thuss SJ, Schiff SL (2011) Coupled cycles of dissolved oxygen and nitrous oxide in rivers along a trophic gradient in Southern Ontario, Canada. J Environ Qual 40: 256–270. doi: 10.2134/jeq2010.0009
|
[37] | Rosamond MS, Thuss SJ, Schiff SL (2012) Dependence of riverine nitrous oxide emissions on dissolved oxygen levels. Nat Geosci 5: 715–718. doi: 10.1038/ngeo1556
|
[38] | Kaiser J, R?ckmann T, Brenninkmeijer CAM (2003) Complete and accurate mass spectrometric isotope analysis of tropospheric nitrous oxide. J Geophys Res Atmos 108: 4476. doi: 10.1029/2003jd003613
|
[39] | Prinn R, Cunnold D, Rasmussen R, Simmonds P, Alyea F, et al. (1990) Atmospheric emissions and trends of nitrous oxide deduced from 10 years of ALE–GAGE data. J Geophys Res Atmos 95: 18369–18385. doi: 10.1029/jd095id11p18369
|
[40] | Prinn RG, Weiss RF, Fraser PJ, Simmonds PG, Cunnold DM, et al. (2000) A history of chemically and radiatively important gases in air deduced from ALE/GAGE/AGAGE. J Geophys Res Atmos 105: 17751–17792. doi: 10.1029/2000jd900141
|
[41] | Lide DR, Frederikse HPR (1995) CRC Handbook of Chemistry and Physics, 76th edition. Boca Raton: CRC Press.
|
[42] | McElroy MB, Jones DBA (1996) Evidence for an additional source of atmospheric N2O. Global Biogeochem Cycles 10: 651–659. doi: 10.1029/96gb02346
|
[43] | Rahn T, Wahlen M (2000) A reassessment of the global isotopic budget of atmospheric nitrous oxide. Global Biogeochem Cycles 14: 537–543. doi: 10.1029/1999gb900070
|
[44] | Stein LY, Yung YL (2003) Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide. Annu Rev Earth Planet Sci 31: 329–356. doi: 10.1146/annurev.earth.31.110502
|
[45] | Baulch HM, Dillon PJ, Maranger R, Venkiteswaran JJ, Wilson HF, et al. (2012) Night and day: short-term variation in nitrogen chemistry and nitrous oxide emissions from streams. Freshwat Biol 57: 509–525. doi: 10.1111/j.1365-2427.2011.02720.x
|
[46] | Harrison JA, Matson PA, Fendorf SE (2005) Effects of a diel oxygen cycle on nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical stream. Aquat Sci 67: 308–315. doi: 10.1007/s00027-005-0776-3
|
[47] | Rock L, Ellert BH, Mayer B, Norman AL (2007) Isotopic composition of tropospheric and soil N2O from successive depths of agricultural plots with contrasting crops and nitrogen amendments. J Geophys Res Atmos 112: D18303. doi: 10.1029/2006jd008330
|
[48] | Kool DM, Wrage N, Oenema O, Dolfifing J, Van Groenigen JW (2007) Oxygen exchange between (de)nitrification intermediates and H2O and its implications for source determination of NO3 and N2O: a review. Rapid Commun Mass Spectrom 21: 356–3578. doi: 10.1002/rcm.3249
|
[49] | Chapra SC, Di Toro DM (1991) Delta method for estimating primary production, respiration, and reaeration in streams. J Environ Eng 117: 640–655. doi: 10.1061/(asce)0733-9372(1991)117:5(640)
|
[50] | Mengis M, Schif SL, Harris M, English MC, Aravena R, et al. (1999) Multiple geochemical and isotopic approaches for assessing ground water no3 elimination in a riparian zone. Ground Water 37: 448–457. doi: 10.1111/j.1745-6584.1999.tb01124.x
|
[51] | Venkiteswaran JJ, Rosamond MS, Schiff SL (2014) Nonlinear response of riverine N2O uxes to oxygen and temperature. Environ Sci Technol 48: 1566–1573. doi: 10.1021/es500069j
|
[52] | Spoelstra J, Schiff SL, Brown SJ (2013) Artificial sweeteners in a large canadian river reect human consumption in the watershed. PLoS ONE 8: e82706. doi: 10.1371/journal.pone.0082706
|
[53] | Hood JLA, Taylor WD, Schiff SL (2013) Examining the fate of WWTP effluent nitrogen using δ15N -$NH_4^\plus $, δ15N -$NO_3^ \minus $, and δ15N of submersed macrophytes. Aquat Sci. doi: 10.1007/s00027-013-0333-4.
|
[54] | Snider DM, Venkiteswaran JJ, Schiff SL, Spoelstra J (2013) A new mechanistic model of δ18O-N2O formation by denitrification. Geochim Cosmochim Acta 112: 102–115. doi: 10.1016/j.gca.2013.03.003
|
[55] | Well R, Flessa H (2009) Isotopologue enrichment factors of N2O reduction in soils. Rapid Commun Mass Spectrom 23: 2996–3002. doi: 10.1002/rcm.4216
|
[56] | Snider DM, Spoelstra J, Schiff SL, Venkiteswaran JJ (2010) Stable oxygen isotope ratios of nitrate produced from nitrification: 18O-labeled water incubations of agricultural and temperate forest soils. Environ Sci Technol 44: 5358–5364. doi: 10.1021/es1002567
|
[57] | Bowen GJ, Wassenaar LI, Hobson KA (2005) Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143: 337–348. doi: 10.1007/s00442-004-1813-y
|
[58] | Clough TJ, Bertram JE, Sherlock RR, Leonard RL, Nowicki BL (2006) Comparison of measured and ef5-r-derived N2O uxes from a spring-fed river. Glob Chang Biol 12: 352–363. doi: 10.1111/j.1365-2486.2005.01089.x
|
[59] | Garnier J, Billen G, Cébron A (2007) Modelling nitrogen transformations in the lower Seine river and estuary (France): impact of wastewater release on oxygenation and N2O emission. Hydrobiologia 588: 291–302. doi: 10.1007/s10750-007-0670-1
|
[60] | Reay DS, Smith KA, Edwards AC (2003) Nitrous oxide emission from agricultural drainage waters. Glob Chang Biol 9: 195–203. doi: 10.1046/j.1365-2486.2003.00584.x
|