[1] | Ebbinghaus H (1913) Memory. Ruger HA, Bussenius CE, translator. New York: Teachers College.
|
[2] | Cepeda NJ, Pashler H, Vul E, Wixted JT, Rohrer D (2006) Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychol Bull 132: 354–380. doi: 10.1037/0033-2909.132.3.354
|
[3] | Dempster FN (1996) Distributing and Managing the Conditions of Encoding and Practice. In: Bjork EL, Bjork RA, editors.Handbook of Perception and Cognition. New York: Academic Press.
|
[4] | Carpenter SK, Cepeda NJ, Rohrer D, Kang SHK, Pashler H (2012) Using Spacing to Enhance Diverse Forms of Learning: Review of Recent Research and Implications for Instruction. Educational Psychology Review 24: 369–378. doi: 10.1007/s10648-012-9205-z
|
[5] | Janiszewski C, Noel H, Sawyer AG (2003) A meta-analysis of spacing effect in verbal learning: Implications for research on advertising repetition and consumer memory. J Consum Res 30: 138–149. doi: 10.1086/374692
|
[6] | Challis BH (1993) Spacing effects on cued-memory tests depend on level of processing. J Exp Psychol Hum Learn Mem 19: 389–396. doi: 10.1037/0278-7393.19.2.389
|
[7] | Toppino TC, Hara Y, Hackman J (2002) The spacing effect in the free recall of homogeneous lists: present and accounted for. Mem Cognit 30: 601–606. doi: 10.3758/bf03194961
|
[8] | Rea CP, Modigliani V (1987) The spacing effect in 4- to 9-year-old children. Mem Cognit 15: 436–443. doi: 10.3758/bf03197733
|
[9] | Toppino TC (1991) The spacing effect in young children's free recall: support for automatic-process explanations. Mem Cognit 19: 159–167. doi: 10.3758/bf03197112
|
[10] | Balota DA, Duchek JM, Paullin R (1989) Age-related differences in the impact of spacing, lag, and retention interval. Psychol Aging 4: 3–9. doi: 10.1037/0882-7974.4.1.3
|
[11] | Simone PM, Bell MC, Cepeda NJ (2012) Diminished But Not Forgotten: Effects of Aging on Magnitude of Spacing Effect Benefits. J Gerontol B Psychol Sci Soc Sci.
|
[12] | Lattal KM (1999) Trial and intertrial durations in Pavlovian conditioning: issues of learning and performance. J Exp Psychol Anim Behav Process 25: 433–450. doi: 10.1037/0097-7403.25.4.433
|
[13] | Mauelshagen J, Sherff CM, Carew TJ (1998) Differential induction of long-term synaptic facilitation by spaced and massed applications of serotonin at sensory neuron synapses of Aplysia californica. Learn Mem 5: 246–256.
|
[14] | Yin JC, Del Vecchio M, Zhou H, Tully T (1995) CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 81: 107–115. doi: 10.1016/0092-8674(95)90375-5
|
[15] | Roediger HL 3rd, Butler AC (2010) The critical role of retrieval practice in long-term retention. Trends Cogn Sci 15: 20–27. doi: 10.1016/j.tics.2010.09.003
|
[16] | Cull WL (2000) Untangling the benefits of multiple study opportunities and repeated testing for cued recall. Appl Cognitive Psych 14: 215–235. doi: 10.1002/(sici)1099-0720(200005/06)14:3<215::aid-acp640>3.3.co;2-t
|
[17] | Karpicke JD, Roediger HL 3rd (2008) The critical importance of retrieval for learning. Science 319: 966–968. doi: 10.1126/science.1152408
|
[18] | Karpicke JD, Roediger HL 3rd (2007) Expanding retrieval practice promotes short-term retention, but equally spaced retrieval enhances long-term retention. J Exp Psychol Learn Mem Cogn 33: 704–719. doi: 10.1037/0278-7393.33.4.704
|
[19] | Cepeda NJ, Coburn N, Rohrer D, Wixted JT, Mozer MC, et al. (2009) Optimizing distributed practice: theoretical analysis and practical implications. Exp Psychol 56: 236–246. doi: 10.1027/1618-3169.56.4.236
|
[20] | Kornmeier J, Sosic-Vasic Z (2012) Parallels between spacing effects during behavioral and cellular learning. Front Hum Neurosci 6: 203. doi: 10.3389/fnhum.2012.00203
|
[21] | Heinrich SP, Kruger K, Bach M (2011) The dynamics of practice effects in an optotype acuity task. Graefes Arch Clin Exp Ophthalmol 249: 1319–1326. doi: 10.1007/s00417-011-1675-z
|
[22] | Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113. doi: 10.1016/0028-3932(71)90067-4
|
[23] | Bach M (2011) Homepage of the Freiburg Visual Acuity & Contrast Test (‘FrACT’). Bach, M.
|
[24] | Lieberman HR, Pentland AP (1982) Microcomputer-based estimation of psychophysical thresholds: The best PEST. Behaviour Research Methods & Instrumentation 14: 21–25. doi: 10.3758/bf03202110
|
[25] | Paliaga GP (1993) Die Bestimmung der Sehsch?rfe. München: Quintessenz-Verlag.
|
[26] | Ferris FL, Kassoff A, Bresnick GH, Bailey I (1982) New visual acuity charts for clinical research. Am J Ophthalmol 94: 91–96.
|
[27] | Donovan JJ, Radosevich DJ (1999) A meta-analytic review of the distribution of practice effect. J Appl Physiol 84: 795–805. doi: 10.1037/0021-9010.84.5.795
|
[28] | Toppino TC, Bloom LC (2002) The spacing effect, free recall, and two-process theory: a closer look. J Exp Psychol Learn Mem Cogn 28: 437–444. doi: 10.1037/0278-7393.28.3.437
|
[29] | Balota DA, Duchek JM, Logan JM (2007) Is expanded retrieval practice a superior form of spaced retrieval? A critical review of the extant literature. In: Nairne JS, editor.The foundations of remembering: Essays in Honor of Henry L Roediger, III.New York: Psychology Press. pp. 464.
|
[30] | Cepeda NJ, Vul E, Rohrer D, Wixted JT, Pashler H (2008) Spacing effects in learning: a temporal ridgeline of optimal retention. Psychol Sci 19: 1095–1102. doi: 10.1111/j.1467-9280.2008.02209.x
|
[31] | Stickgold R (2005) Sleep-dependent memory consolidation. Nature 437: 1272–1278. doi: 10.1038/nature04286
|
[32] | Frank MG, Benington JH (2006) The role of sleep in memory consolidation and brain plasticity: dream or reality? Neuroscientist 12: 477–488. doi: 10.1177/1073858406293552
|
[33] | Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11: 114–126. doi: 10.1038/nrn2762
|
[34] | Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129: 1659–1673. doi: 10.1093/brain/awl082
|
[35] | Abraham WC (2003) How long will long-term potentiation last? Philos Trans R Soc Lond B Biol Sci 358: 735–744. doi: 10.1098/rstb.2002.1222
|
[36] | Kalantzis G, Shouval HZ (2009) Structural plasticity can produce metaplasticity. PLoS One 4: e8062. doi: 10.1371/journal.pone.0008062
|
[37] | Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84: 87–136. doi: 10.1152/physrev.00014.2003
|
[38] | Albensi BC, Oliver DR, Toupin J, Odero G (2007) Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 204: 1–13. doi: 10.1016/j.expneurol.2006.12.009
|
[39] | Racine RJ, Chapman CA, Trepel C, Teskey GC, Milgram NW (1995) Post-activation potentiation in the neocortex. IV. Multiple sessions required for induction of long-term potentiation in the chronic preparation. Brain Res 702: 87–93. doi: 10.1016/0006-8993(95)01025-0
|
[40] | Scharf MT, Woo NH, Lattal KM, Young JZ, Nguyen PV, et al. (2002) Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. J Neurophysiol 87: 2770–2777.
|
[41] | Lynch G, Kramar EA, Babayan AH, Rumbaugh G, Gall CM (2013) Differences between synaptic plasticity thresholds result in new timing rules for maximizing long-term potentiation. Neuropharmacology 64: 27–36. doi: 10.1016/j.neuropharm.2012.07.006
|
[42] | Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44: 5–21. doi: 10.1016/j.neuron.2004.09.012
|
[43] | Beste C, Wascher E, Gunturkun O, Dinse HR (2011) Improvement and Impairment of Visually Guided Behavior through LTP- and LTD-like Exposure-Based Visual Learning. Curr Biol 21: 876–882. doi: 10.1016/j.cub.2011.03.065
|
[44] | Aberg KC, Herzog MH (2012) About similar characteristics of visual perceptual learning and LTP. Vision Res 61: 100–106. doi: 10.1016/j.visres.2011.12.013
|