Coronaviruses cause respiratory disease in humans that can range from mild to severe. However, the pathogenesis of pulmonary coronavirus infections is poorly understood. Mouse hepatitis virus type 1 (MHV-1) is a group 2 coronavirus capable of causing severe morbidity and mortality in highly susceptible C3H/HeJ mice. We have previously shown that both CD4 and CD8 T cells play a critical role in mediating MHV-1-induced disease. Here we evaluated the role of alveolar macrophages (AM) in modulating the adaptive immune response and subsequent disease. Depletion of AM using clodronate liposomes administered prior to MHV-1 infection was associated with a significant amelioration of MHV-1-induced morbidity and mortality. AM depletion resulted in a decreased number of virus-specific CD4 T cells in the lung airways. In addition, a significant increase in the frequency and total number of Tregs in the lung tissue and lung airways was observed following MHV-1 infection in mice depleted of AM. Our results indicate that AM play a critical role in modulating MHV-1-induced morbidity and mortality.
References
[1]
Almeida JD, Tyrrell DA (1967) The morphology of three previously uncharacterized human respiratory viruses that grow in organ culture. J Gen Virol 1: 175–178. doi: 10.1099/0022-1317-1-2-175
[2]
Hamre D, Procknow JJ (1966) A new virus isolated from the human respiratory tract. Proc Soc Exp Biol Med 121: 190–193. doi: 10.3181/00379727-121-30734
[3]
Tyrrell DA, Bynoe ML (1965) Cultivation of a Novel Type of Common-Cold Virus in Organ Cultures. Br Med J 1: 1467–1470. doi: 10.1136/bmj.1.5448.1467
[4]
van der Hoek L, Pyrc K, Jebbink MF, Vermeulen-Oost W, Berkhout RJ, et al. (2004) Identification of a new human coronavirus. Nat Med 10: 368–373. doi: 10.1038/nm1024
[5]
Woo PC, Lau SK, Chu CM, Chan KH, Tsoi HW, et al. (2005) Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J Virol 79: 884–895. doi: 10.1128/jvi.79.2.884-895.2005
[6]
Fouchier RA, Kuiken T, Schutten M, van Amerongen G, van Doornum GJ, et al. (2003) Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423: 240. doi: 10.1038/423240a
[7]
Holmes KV (2003) SARS-associated coronavirus. N Engl J Med 348: 1948–1951. doi: 10.1056/nejmp030078
[8]
Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, et al. (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348: 1953–1966. doi: 10.1056/nejmoa030781
[9]
Lee N, Hui D, Wu A, Chan P, Cameron P, et al. (2003) A major outbreak of severe acute respiratory syndrome in Hong Kong. N Engl J Med 348: 1986–1994. doi: 10.1056/nejmoa030685
[10]
Marra MA, Jones SJ, Astell CR, Holt RA, Brooks-Wilson A, et al. (2003) The Genome sequence of the SARS-associated coronavirus. Science 300: 1399–1404. doi: 10.1126/science.1085953
[11]
Poutanen SM, Low DE, Henry B, Finkelstein S, Rose D, et al. (2003) Identification of severe acute respiratory syndrome in Canada. N Engl J Med 348: 1995–2005. doi: 10.1056/nejmoa030634
[12]
Zhao Z, Zhang F, Xu M, Huang K, Zhong W, et al. (2003) Description and clinical treatment of an early outbreak of severe acute respiratory syndrome (SARS) in Guangzhou, PR China. J Med Microbiol 52: 715–720. doi: 10.1099/jmm.0.05320-0
[13]
Zhong NS, Zheng BJ, Li YM, Poon LLM, Xie ZH, et al. (2003) Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet 362: 1353–1358. doi: 10.1016/s0140-6736(03)14630-2
[14]
De Albuquerque N, Baig E, Ma X, Zhang J, He W, et al. (2006) Murine hepatitis virus strain 1 produces a clinically relevant model of severe acute respiratory syndrome in A/J mice. J Virol 80: 10382–10394. doi: 10.1128/jvi.00747-06
[15]
Poltorak A, He X, Smirnova I, Liu MY, Van Huffel C, et al. (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085–2088. doi: 10.1126/science.282.5396.2085
[16]
Vogel SN, Hansen CT, Rosenstreich DL (1979) Characterization of a congenitally LPS-resistant, athymic mouse strain. J Immunol 122: 619–622.
[17]
Khanolkar A, Hartwig SM, Haag BA, Meyerholz DK, Harty JT, et al. (2009) Toll-like receptor 4 deficiency increases disease and mortality after mouse hepatitis virus type 1 infection of susceptible C3H mice. J Virol 83: 8946–8956. doi: 10.1128/jvi.01857-08
[18]
Khanolkar A, Hartwig SM, Haag BA, Meyerholz DK, Epping LL, et al. (2009) Protective and pathologic roles of the immune response to mouse hepatitis virus type 1: implications for severe acute respiratory syndrome. J Virol 83: 9258–9272. doi: 10.1128/jvi.00355-09
[19]
Castilow EM, Olson MR, Meyerholz DK, Varga SM (2008) Differential role of gamma interferon in inhibiting pulmonary eosinophilia and exacerbating systemic disease in fusion protein-immunized mice undergoing challenge infection with respiratory syncytial virus. J Virol 82: 2196–2207. doi: 10.1128/jvi.01949-07
[20]
McDermott DS, Varga SM (2011) Quantifying antigen-specific CD4 T cells during a viral infection: CD4 T cell responses are larger than we think. J Immunol 187: 5568–5576. doi: 10.4049/jimmunol.1102104
[21]
Khanolkar A, Fulton RB, Epping LL, Pham NL, Tifrea D, et al. (2010) T cell epitope specificity and pathogenesis of mouse hepatitis virus-1-induced disease in susceptible and resistant hosts. J Immunol 185: 1132–1141. doi: 10.4049/jimmunol.0902749
[22]
Masopust D, Murali-Krishna K, Ahmed R (2007) Quantitating the magnitude of the lymphocytic choriomeningitis virus-specific CD8 T-cell response: it is even bigger than we thought. J Virol 81: 2002–2011. doi: 10.1128/jvi.01459-06
[23]
Rai D, Pham NL, Harty JT, Badovinac VP (2009) Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts. J Immunol 183: 7672–7681. doi: 10.4049/jimmunol.0902874
[24]
Mills KH (2004) Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 4: 841–855. doi: 10.1038/nri1485
[25]
Taguchi F, Yamaguchi R, Makino S, Fujiwara K (1981) Correlation between growth potential of mouse hepatitis viruses in macrophages and their virulence for mice. Infect Immun 34: 1059–1061.
[26]
Rivera R, Hutchens M, Luker KE, Sonstein J, Curtis JL, et al. (2007) Murine alveolar macrophages limit replication of vaccinia virus. Virology 363: 48–58. doi: 10.1016/j.virol.2007.01.033
[27]
Holt PG, Oliver J, Bilyk N, McMenamin C, McMenamin PG, et al. (1993) Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J Exp Med 177: 397–407. doi: 10.1084/jem.177.2.397
[28]
Strickland DH, Thepen T, Kees UR, Kraal G, Holt PG (1993) Regulation of T-cell function in lung tissue by pulmonary alveolar macrophages. Immunology 80: 266–272.
[29]
Zhao J, Zhao J, Van Rooijen N, Perlman S (2009) Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV-infected mice. PLoS Pathog 5: e1000636. doi: 10.1371/journal.ppat.1000636
[30]
Pribul PK, Harker J, Wang B, Wang H, Tregoning JS, et al. (2008) Alveolar macrophages are a major determinant of early responses to viral lung infection but do not influence subsequent disease development. J Virol 82: 4441–4448. doi: 10.1128/jvi.02541-07
[31]
Soroosh P, Doherty TA, Duan W, Mehta AK, Choi H, et al. (2013) Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J Exp Med 210: 775–788. doi: 10.1084/jem.20121849
[32]
Savage ND, de Boer T, Walburg KV, Joosten SA, van Meijgaarden K, et al. (2008) Human anti-inflammatory macrophages induce Foxp3+ GITR+ CD25+ regulatory T cells, which suppress via membrane-bound TGFbeta-1. J Immunol 181: 2220–2226. doi: 10.4049/jimmunol.181.3.2220
[33]
Fulton RB, Meyerholz DK, Varga SM (2010) Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J Immunol 185: 2382–2392. doi: 10.4049/jimmunol.1000423
[34]
Betts RJ, Prabhu N, Ho AW, Lew FC, Hutchinson PE, et al. (2012) Influenza A virus infection results in a robust, antigen-responsive, and widely disseminated Foxp3+ regulatory T cell response. J Virol 86: 2817–2825. doi: 10.1128/jvi.05685-11