全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Proteomic Characterization of Plasmid pLA1 for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Marine Bacterium, Novosphingobium pentaromativorans US6-1

DOI: 10.1371/journal.pone.0090812

Full-Text   Cite this paper   Add to My Lib

Abstract:

Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs). Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs) identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1.

References

[1]  Sarma PM, Duraja P, Deshpande S, Lal B (2010) Degradation of pyrene by an enteric bacterium, Leclercia adecarboxylata PS4040. Biodegradation 21: 59–69. doi: 10.1007/s10532-009-9281-z
[2]  Kim SJ, Kweon O, Cerniglia CE (2009) Proteomic applications to elucidate bacterial aromatic hydrocarbon metabolic pathways. Curr Opin Microbiol 12: 301–309. doi: 10.1016/j.mib.2009.03.006
[3]  Kim SI, Choi JS, Kahng HY (2007) A proteomics strategy for the analysis of bacterial biodegradation pathways. OMICS 11: 280–294. doi: 10.1089/omi.2007.0019
[4]  Kim SJ, Jones RC, Cha CJ, Kweon O, Edmondson RD, et al. (2004) Identification of proteins induced by polycyclic aromatic hydrocarbon in Mycobacterium vanbaalenii PYR-1 using two-dimensional polyacrylamide gel electrophoresis and de novo sequencing methods. Proteomics 4: 3899–3908. doi: 10.1002/pmic.200400872
[5]  Kim YH, Freeman JP, Moody JD, Engesser KH, Cerniglia CE (2005) Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Appl Microbiol Biotechnol 67: 275–285. doi: 10.1007/s00253-004-1796-y
[6]  Kim SJ, Kweon O, Jones RC, Freeman JP, Edmondson RD, et al. (2007) Complete and integrated pyrene degradation pathway in Mycobacterium vanbaalenii PYR-1 based on systems biology. J Bacteriol 189: 464–472. doi: 10.1128/jb.01310-06
[7]  Kweon O, Kim SJ, Holland RD, Chen H, Kim DW, et al. (2011) Polycyclic aromatic hydrocarbon metabolic network in Mycobacterium vanbaalenii PYR-1. J Bacteriol 193: 4326–4337. doi: 10.1128/jb.00215-11
[8]  Liang Y, Gardner DR, Miller CD, Chen D, Anderson AJ, et al. (2006) Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microbiol 72: 7821–7828. doi: 10.1128/aem.01274-06
[9]  Demaneche S, Meyer C, Micoud J, Louwagie M, Willison JC, et al. (2004) Identification and functional analysis of two aromatic-ring-hydroxylating dioxygenases from a sphingomonas strain that degrades various polycyclic aromatic hydrocarbons. Appl Environ Microbiol 70: 6714–6725. doi: 10.1128/aem.70.11.6714-6725.2004
[10]  Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54: 1483–1487. doi: 10.1099/ijs.0.02945-0
[11]  Luo YR, Kang SG, Kim SJ, Kim MR, Li N, et al. (2012) Genome sequence of benzo(a)pyrene-degrading bacterium Novosphingobium pentaromativorans US6-1. J Bacteriol 194: 907. doi: 10.1128/jb.06476-11
[12]  Aylward FO, McDonald BR, Adams SM, Valenzuela A, Schmidt RA, et al. (2013) Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79: 3724–3733. doi: 10.1128/aem.00518-13
[13]  Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254. doi: 10.1006/abio.1976.9999
[14]  Kim YH, Cho K, Yun SH, Kim JY, Kwon KH, et al. (2006) Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Proteomics 6: 1301–1318. doi: 10.1002/pmic.200500329
[15]  Yun SH, Park GW, Kim JY, Kwon SO, Choi CW, et al. (2011) Proteomic characterization of the Pseudomonas putida KT2440 global response to a monocyclic aromatic compound by iTRAQ analysis and 1DE-MudPIT. J Proteomics 74: 620–628. doi: 10.1016/j.jprot.2011.01.020
[16]  Choi CW, Lee YG, Kwon SO, Kim HY, Lee JC, et al. (2012) Analysis of Streptococcus pneumoniae secreted antigens by immuno-proteomic approach. Diagn Microbiol Infect Dis 72: 318–327. doi: 10.1016/j.diagmicrobio.2011.12.013
[17]  Moon YJ, Kwon J, Yun SH, Lim HL, Kim MS, et al. (2012) Proteome analyses of hydrogen-producing hyperthermophilic archaeon Thermococcus onnurineus NA1 in different one-carbon substrate culture conditions. Mol Cell Proteomics 11: M111 015420.
[18]  Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863–14868. doi: 10.1073/pnas.95.25.14863
[19]  Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64: 643–651. doi: 10.1002/prot.21018
[20]  Kall L, Krogh A, Sonnhammer EL (2004) A combined transmembrane topology and signal peptide prediction method. J Mol Biol 338: 1027–1036. doi: 10.1016/j.jmb.2004.03.016
[21]  Jouanneau Y, Meyer C (2006) Purification and characterization of an arene cis-dihydrodiol dehydrogenase endowed with broad substrate specificity toward polycyclic aromatic hydrocarbon dihydrodiols. Appl Environ Microbiol 72: 4726–4734. doi: 10.1128/aem.00395-06
[22]  Singleton DR, Hu J, Aitken MD (2012) Heterologous expression of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes from a novel pyrene-degrading betaproteobacterium. Appl Environ Microbiol 78: 3552–3559. doi: 10.1128/aem.00173-12
[23]  Kasai Y, Shindo K, Harayama S, Misawa N (2003) Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl Environ Microbiol 69: 6688–6697. doi: 10.1128/aem.69.11.6688-6697.2003
[24]  Romine MF, Stillwell LC, Wong KK, Thurston SJ, Sisk EC, et al. (1999) Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J Bacteriol 181: 1585–1602.
[25]  Shintani M, Urata M, Inoue K, Eto K, Habe H, et al. (2007) The Sphingomonas plasmid pCAR3 is involved in complete mineralization of carbazole. J Bacteriol 189: 2007–2020. doi: 10.1128/jb.01486-06

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133