全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Gender-Specific Potential Inhibitory Role of Ca2+/Calmodulin Dependent Protein Kinase Phosphatase (CaMKP) in Pressure-Overloaded Mouse Heart

DOI: 10.1371/journal.pone.0090822

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) has been proposed as a potent regulator of multifunctional Ca2+/calmodulin-dependent protein kinases (i.e., CaMKII). The CaMKII-dependent activation of myocyte enhancer factor 2 (MEF2) disrupts interactions between MEF2-histone deacetylases (HDACs), thereby de-repressing downstream gene transcription. Whether CaMKP modulates the CaMKII- MEF2 pathway in the heart is unknown. Here, we investigated the molecular and functional consequences of left ventricular (LV) pressure overload in the mouse of both genders, and in particular we evaluated the expression levels and localization of CaMKP and its association with CaMKII-MEF2 signaling. Methodology and Principal Findings Five week-old B6D1/F1 mice of both genders underwent a sham-operation or thoracic aortic constriction (TAC). Thirty days later, TAC was associated with pathological LV hypertrophy characterized by systolic and diastolic dysfunction. Gene expression was assessed by real-time PCR. Fetal gene program re-expression comprised increased RNA levels of brain natriuretic peptide and alpha-skeletal actin. Mouse hearts of both genders expressed both CaMKP transcript and protein. Activation of signalling pathways was studied by Western blot in LV lysates or subcellular fractions (nuclear and cytoplasmic). TAC was associated with increased CaMKP expression in male LVs whereas it tended to be decreased in females. The DNA binding activity of MEF2 was determined by spectrophotometry. CaMKP compartmentalization differed according to gender. In male TAC mice, nuclear CaMKP was associated with inactive CaMKII resulting in less MEF2 activation. In female TAC mice, active CaMKII (phospho-CaMKII) detected in the nuclear fraction, was associated with a strong MEF2 transcription factor-binding activity. Conclusions/Significance Gender-specific CaMKP compartmentalization is associated with CaMKII-mediated MEF2 activation in pressure-overloaded hearts. Therefore, CaMKP could be considered as an important novel cellular target for the development of new therapeutic strategies for heart diseases.

References

[1]  Bers DM, Guo T (2005) Calcium signaling in cardiac ventricular myocytes. Ann N Y Acad Sci 1047: 86–98. PMID: 16093487.
[2]  Santana LF (2008) NFAT-dependent excitation-transcription coupling in heart. Circ Res 103(7): 681–3 doi:10.1161/CIRCRESAHA.108.185090.
[3]  Zarain-Herzberg A, Fragoso-Medina J, Estrada-Avilés R (2011) Calcium-regulated transcriptional pathways in the normal and pathological heart. IUBMB Life 63(10): 847–855 doi:101002/iub.545. Epub 2011 Sep 7. Review. PMID: 21901815.
[4]  Maier LS (2012) Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in the heart. Adv Exp Med Biol 740: 685–702 doi:_10.1007/978-94-007-2888-2_30. Review.PMID: 22453965.
[5]  Domínguez-Rodríguez A, Ruiz-Hurtado G, Benitah JP, Gómez AM (2012) The other side of cardiac Ca(2+) signaling: transcriptional control. Front Physiol 3: 452 doi:10.3389/fphys.2012.00452. Epub 2012 Nov 28. PMID: 23226134.
[6]  Zhong X, Liu J, Lu F, Wang Y, Zhao Y, et al. (2012) Calcium sensing receptor regulates cardiomyocyte function through nuclear calcium. Cell Biol Int 36(10): 937–43 doi:10.1042/CBI20110594. PMID: 22708524.
[7]  Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8): 589–600. Review. doi: 10.1038/nrm1983. PMID: 16936699.
[8]  Houser SR, Molkentin JD (2008) Does contractile Ca2+ control calcineurin-NFAT signaling and pathological hypertrophy in cardiac myocytes? Sci Signal 24 1(25): pe31 doi:10.1126/scisignal.125pe31. PMID: 18577756.
[9]  Prasad AM, Inesi G (2011) Silencing calcineurin A subunit reduces SERCA2 expression in cardiac myocytes. Am J Physiol Heart Circ Physiol 300(1): H173–80 doi:10.1152/ajpheart.00841.2010. Epub 2010 Nov 5. PMID: 21057045.
[10]  MacDonnell SM, Weisser-Thomas J, Kubo H, Hanscome M, Liu Q, et al. (2009) CaMKII negatively regulates calcineurin-NFAT signaling in cardiac myocytes. Circ Res 105(4): 316–25 doi:10.1161/CIRCRESAHA.109.194035. Epub 2009 Jul 16. PMID: 19608982.
[11]  Maier LS (2009) Role of CaMKII for signaling and regulation in the heart. Front Biosci 14: 486–96. Review. PMID: 19273080.
[12]  Bers DM (2011) Ca2+-calmodulin-dependent protein kinase II regulation of cardiac excitation-transcription coupling. Heart Rhythm 8(7): 1101–4 doi:10.1016/j.hrthm.2011.01.030. Epub 2011 Jan 18. PMID: 21255680.
[13]  Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51(4): 468–73 doi:10.1016/j.yjmcc.2011.01.012. Epub 2011 Jan 27. Review. PMID: 21276796.
[14]  Swaminathan PD, Purohit A, Hund TJ, Anderson ME (2012) Calmodulin-dependent protein kinase II: linking heart failure and arrhythmias. Circ Res 110(12): 1661–77 doi:10.1161/CIRCRESAHA.111.243956. Review. PMID: 22679140.
[15]  Ishida A, Kameshita I, Fujisawa H (1998) A novel protein phosphatase that dephosphorylates and regulates Ca2+/calmodulin-dependent protein kinase II. J Biol Chem 273(4): 1904–10 doi:10.1074/jbc.273.4.1904. PMID: 9442023.
[16]  Kitani T, Ishida A, Okuno S, Takeuchi M, Kameshita I, et al.. (1999) Molecular cloning of Ca2+/calmodulin-dependent protein kinase phosphatase. J Biochem 125(6): 1022–1028. PMID: 10348902.
[17]  Tan KM, Chan SL, Tan KO, Yu VC (2001) The Caenorhabditis elegans sex-determining protein FEM-2 and its human homologue, hFEM-2, are Ca2+/calmodulin-dependent protein kinase phosphatases that promote apoptosis. J Biol Chem 276(47): 44193–44202 doi:10.1074/jbc.M105880200. PMID: 11559703.
[18]  Nimura T, Sueyoshi N, Ishida A, Yoshimura Y, Ito M, et al. (2007) Knockdown of nuclear Ca2+/calmodulin-dependent protein kinase phosphatase causes developmental abnormalities in zebrafish. Arch Biochem Biophys 457(2): 205–16 doi:10.1016/j.abb.2006.09.034. PMID: 17169323.
[19]  Sueyoshi N, Nimura T, Ishida A, Taniguchi T, Yoshimura Y, et al. (2009) Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is indispensable for normal embryogenesis in zebrafish, Danio rerio. Arch Biochem Biophys 488(1): 48–59 doi:10.1016/j.abb.2009.06.003. Epub 2009 Jun 13. PMID: 19527677.
[20]  Ishida A, Shigeri Y, Taniguchi T, Kameshita I (2003) Protein phosphatases that regulate multifunctional Ca2+/calmodulin-dependent protein kinases: from biochemistry to pharmacology. Pharmacol Ther 100(3): 291–305. Review. doi: 10.1016/j.pharmthera.2003.09.003. PMID: 4652114.
[21]  Takeuchi M, Ishida A, Kameshita I, Kitani T, Okuno S, et al.. (2001) Identification and characterization of CaMKP-N, nuclear calmodulin-dependent protein kinase phosphatase. J Biochem 130(6): 833–40. PMID: 11726284.
[22]  Ishida A, Tada Y, Nimura T, Sueyoshi N, Katoh T, et al. (2005) Identification of major Ca(2+)/calmodulin-dependent protein kinase phosphatase-binding proteins in brain: biochemical analysis of the interaction. Arch Biochem Biophys 435(1): 134–146 doi:10.1016/j.abb.2004.11.022. PMID: 15680915.
[23]  Ishida A, Sueyoshi N, Shigeri Y, Kameshita I (2008) Negative regulation of multifunctional Ca2+/calmodulin-dependent protein kinases: physiological and pharmacological significance of protein phosphatases. Br J Pharmacol 154(4): 729–40 doi:10.1038/bjp.2008.127. Epub 2008 May 5. Review. PMID: 18454172.
[24]  Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, et al. (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105: 1395–1406 doi:10.1172/JCI8551.
[25]  Prévilon M, Pezet M, Semprez F, Mercadier JJ, Rouet-Benzineb P (2011) FKBP12.6 mice display temporal gender differences in cardiac Ca (2+)-signalling phenotype upon chronic pressure overload. Can J Physiol Pharmacol 89(11): 769–82 doi:10.1139/Y11-075. Epub 2011 Oct 18. PMID: 22007848.
[26]  Vinet L, Rouet-Benzineb P, Marniquet X, Pellegrin N, Mangin L, et al. (2008) Chronic doxycycline exposure accelerates left ventricular hypertrophy and progression to heart failure in mice after thoracic aorta constriction. Am J Physiol Heart Circ Physiol 95(1): H352–60 doi:10.1152/ajpheart.01101.2007. Epub 2008 May 16. PMID: 18487442.
[27]  Vinet L, Pezet M, Bito V, Briec F, Biesmans L, et al. (2012) Cardiac FKBP12.6 overexpression protects against triggered ventricular tachycardia in pressure overloaded mouse hearts. Basic Res Cardiol 107(2): 246 doi:10.1007/s00395-012-0246-8. Epub 2012 Feb 4. PMID: 22311731.
[28]  Prévilon M, Pezet M, Dachez C, Mercadier JJ, Rouet-Benzineb P (2010) Sequential alterations in Akt, GSK3β, and calcineurin signalling in the mouse left ventricle after thoracic aortic constriction. Can J Physiol Pharmacol 88(11): 1093–101 doi:10.1139/y10-087. PMID: 21076497.
[29]  Kameshita I, Baba H, Umeda Y, Sueyoshi N (2010) In-gel protein phosphatase assay using fluorogenic substrates. Anal Biochem 400: 118–122 doi:10.1016/j.ab.2009.12.035.
[30]  Li Y, Kishimoto I, Saito Y, Harada M, Kuwahara K, et al.. (2004)Androgen contributes to gender-related cardiac hypertrophy and fibrosis in mice lacking the gene encoding guanylyl cyclase-A. Endocrinology 2004 Feb; 145(2): 951–8. Epub 2003 Oct 30. PMID: 14592959.
[31]  Hori Y, Uechi M, Ebisawa T, Yamano S, Yoshioka K, et al. (2008) http://www.ncbi.nlm.nih.gov.gate2.inist.?fr/pubmed?term=Mutoh%20K%5BAuthor%5D&cau?thor=true&cauthor_uid=18935909 (2008) The influence of gender on cardiac fibrosis induced by sympathetic stimulation. Chin J Physiol 51(3): 146–151. Erratum in Chin J Physiol. 2008 Aug 31 51(4): 261.
[32]  Fliegner D, Schubert C, Penkalla A, Witt H, Kararigas G, et al. (2010) Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload. Am J Physiol Regul Integr Comp Physiol 298(6): R1597–R1606 doi:;[]10.1152/ajpregu.00825.2009. Epub 2010 Apr 7. Erratum in: Am J Physiol Regul Integr Comp Physiol. 2010 Sep; 299(3): R981. Kararigas, George [corrected to Kararigas, Georgios] PMID: 20375266.
[33]  Westphal C, Schubert C, Prelle K, Penkalla A, Fliegner D, et al. (2012) Effects of estrogen, an ERα agonist and raloxifene on pressure overload induced cardiac hypertrophy. PLoS One 7(12): e50802 doi:10.1371/journal.pone.0050802. Epub 2012 Dec 5.
[34]  Montalvo C, Villar AV, Merino D, García R, Ares M, et al. (2012) Androgens contribute to sex differences in myocardial remodeling under pressure overload by a mechanism involving TGF-β. PLoS One 2 7(4): e35635 doi:10.1371/journal.pone.0035635. Epub 2012 Apr 25.
[35]  Konhilas JP, Maass A, Lukey SW, Stauffer,Bl, Olson EN, et al. (2004) Sex modifies exercise and cardiac adaptation in mice. Am J Physiol Heart Circ Physiol 287: H2768–H2776 Doi:10.1152/ajpheart.00292.2004.
[36]  Little GH, Bai Y, Williams T, Poizat C (2007) Nuclear calcium/calmodulin-dependent protein kinase IIdelta preferentially transmits signals to histone deacetylase 4 in cardiac cells. J Biol Chem 282(10): 7219–31 doi:10.1074/jbc.M604281200 Epub 2006 Dec 19. PMID: 17179159.
[37]  Wang W, Zhu W, Wang S, Yang D, Crow MT, et al. (2004) Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway. Circ Res 95: 798–806 doi:10.1161/01.RES.0000145361.50017.aa.
[38]  Grimm M, Brown JH (2010) Beta-adrenergic receptor signaling in the heart: Role of CaMKII. J Mol Cell Cardiol 48: 322–330 doi:10.1016/j.yjmcc.2009.10.016.
[39]  Backs J, Song K, Bezprozvannaya S, Chang S, Olson EN (2006) CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy. J Clin Invest 116: 1853–1864 doi:10.1172/JCI27438.
[40]  Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN (2008) Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol 28: 3437–3445 doi:10.1128/MCB.01611-07.
[41]  El Azzouzi H, van Oort RJ, van der Nagel R, Sluiter W, Bergmann MW, et al. (2010) MEF2 transcriptional activity maintains mitochondrial adaptation in cardiac pressure overload. Euro J Heat fail 2010 12: 4–12 doi:10.1093/eurjhf/hfp165.
[42]  Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, et al.. (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110: 479–488. PMID: 12202037.
[43]  Zhang T, Kohlhaas M, Backs J, Mishra S, Phillips W, et al. (2007) CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem 282: 35078–35087 doi:10.1074/jbc.M707083200.
[44]  Van Rooij E, Fielitz J, Sutherland LB, Thijssen VL, Crijns HJ, et al. (2010) Myocyte enhancer factor2 and class II histone deacetylases control a gender-specific athway of cardioprotection mediated by the estrogen receptor. Cir Res 106: 155–165 Doi:10.1161/CIRCRESAHA.109.207084.
[45]  Muscat GE, Perry S, Prentice H, Kedes L (1992) The human skeletal alpha-actin gene is regulated by a muscle-specific enhancer that's bins three nuclear factors. Gene Expr 2 (2): 111–126. PMID: 1633435.
[46]  Lemonnier M, Buckingham ME (2004) Characterization of a cardiac-specific enhancer, which directs a-cardiac actin gene transcription in the mouse adult heart. J Biol Chem 279: 55651–55658 doi:10.1074/jbc.M411082200.
[47]  Awad S, Kunhi M, Little GH, Bai Y, An W, et al. (2013) Nuclear CaMKII enhances histone H3 phosphorylation and remodels chromatin during cardiac hypertrophy. Nucleic Acid Res 41: 7656–7672 Doi:10.1093/nar/gkt500.
[48]  Sueyoshi N, Nimura T, Onouchi T, Baba H, Takenaka S, et al. (2012) Functional processing of nuclear Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP-N): evidence for a critical role of proteolytic processing in the regulation of its catalytic activity, subcellular localization and substrate targeting in vivo. Arch Biochem Biophys 517(1): 43–52 doi:10.1016/j.abb.2011.10.017. Epub 2011 Nov11PMID: 22100705.
[49]  Baba H, Sueyoshi N, Shigeri Y, Ishida A, Kameshita I (2012) Regulation of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) by oxidation/reduction at Cys-359. Arch Biochem Biophys. 2012 Oct 1 526(1): 9–15 doi:10.1016/j.abb.2012.06.005. Epub 2012 Jun 26. PMID: 22743349.
[50]  Wagner S, Rokita AG, Anderson ME, Maier LS (2013) Redox Regulation of Sodium and Calcium Handling. Antioxid Redox Signal 18, 1063–1077. doi: 10.1089/ars.2012.4818.
[51]  Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, et al. (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133: 462–474 doi:10.1016/j.cell.2008.02.048. PMID: 18455987.
[52]  Erickson JR, He BJ, Grumbach IM, Anderson ME (2011) CaMKII in the cardiovascular system: Sensing redox states. Physiol Rev 91: 889–915 doi:10.1152/physrev.00018.2010. PMID: 21742790.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133