全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

An Evaluation of a SVA Retrotransposon in the FUS Promoter as a Transcriptional Regulator and Its Association to ALS

DOI: 10.1371/journal.pone.0090833

Full-Text   Cite this paper   Add to My Lib

Abstract:

Genetic mutations of FUS have been linked to many diseases including Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Lobar Degeneration. A primate specific and polymorphic retrotransposon of the SINE-VNTR-Alu (SVA) family is present upstream of the FUS gene. Here we have demonstrated that this retrotransposon can act as a classical transcriptional regulatory domain in the context of a reporter gene construct both in vitro in the human SK-N-AS neuroblastoma cell line and in vivo in a chick embryo model. We have also demonstrated that the SVA is composed of multiple distinct regulatory domains, one of which is a variable number tandem repeat (VNTR). The ability of the SVA and its component parts to direct reporter gene expression supported a hypothesis that this region could direct differential FUS expression in vivo. The SVA may therefore contribute to the modulation of FUS expression exhibited in and associated with neurological disorders including ALS where FUS regulation may be an important parameter in progression of the disease. As VNTRs are often clinical associates for disease progression we determined the extent of polymorphism within the SVA. In total 2 variants of the SVA were identified based within a central VNTR. Preliminary analysis addressed the association of these SVA variants within a small sporadic ALS cohort but did not reach statistical significance, although we did not include other parameters such as SNPs within the SVA or an environmental factor in this analysis. The latter may be particularly important as the transcriptional and epigenetic properties of the SVA are likely to be directed by the environment of the cell.

References

[1]  Abel O, Powell JF, Andersen PM, Al-Chalabi A (2012) ALSoD: A user-friendly online bioinformatics tool for amyotrophic lateral sclerosis genetics. Hum Mutat 33: 1345–1351. doi: 10.1002/humu.22157
[2]  Chio A, Calvo A, Moglia C, Ossola I, Brunetti M, et al.. (2011) A de novo missense mutation of the FUS gene in a “true” sporadic ALS case. Neurobiol Aging 32: 553 e523–556.
[3]  Lai SL, Abramzon Y, Schymick JC, Stephan DA, Dunckley T, et al.. (2011) FUS mutations in sporadic amyotrophic lateral sclerosis. Neurobiol Aging 32: 550 e551–554.
[4]  Sproviero W, La Bella V, Mazzei R, Valentino P, Rodolico C, et al.. (2012) FUS mutations in sporadic amyotrophic lateral sclerosis: clinical and genetic analysis. Neurobiol Aging 33: 837 e831–835.
[5]  Corrado L, Del Bo R, Castellotti B, Ratti A, Cereda C, et al. (2010) Mutations of FUS gene in sporadic amyotrophic lateral sclerosis. J Med Genet 47: 190–194. doi: 10.1136/jmg.2009.071027
[6]  Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, et al. (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323: 1208–1211. doi: 10.1126/science.1165942
[7]  Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, et al. (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323: 1205–1208. doi: 10.1126/science.1166066
[8]  Deng HX, Zhai H, Bigio EH, Yan J, Fecto F, et al. (2010) FUS-immunoreactive inclusions are a common feature in sporadic and non-SOD1 familial amyotrophic lateral sclerosis. Ann Neurol 67: 739–748. doi: 10.1002/ana.22051
[9]  Mitchell JC, McGoldrick P, Vance C, Hortobagyi T, Sreedharan J, et al. (2013) Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion. Acta Neuropathol 125: 273–288. doi: 10.1007/s00401-012-1043-z
[10]  Davidson S, Lear M, Shanley L, Hing B, Baizan-Edge A, et al. (2011) Differential activity by polymorphic variants of a remote enhancer that supports galanin expression in the hypothalamus and amygdala: implications for obesity, depression and alcoholism. Neuropsychopharmacology 36: 2211–2221. doi: 10.1038/npp.2011.93
[11]  Paredes UM, Bubb VJ, Haddley K, Macho GA, Quinn JP (2011) An evolutionary conserved region (ECR) in the human dopamine receptor D4 gene supports reporter gene expression in primary cultures derived from the rat cortex. BMC Neurosci 12: 46. doi: 10.1186/1471-2202-12-46
[12]  Shanley L, Davidson S, Lear M, Thotakura AK, McEwan IJ, et al. (2010) Long-range regulatory synergy is required to allow control of the TAC1 locus by MEK/ERK signalling in sensory neurones. Neurosignals 18: 173–185. doi: 10.1159/000322010
[13]  Vasiliou SA, Ali FR, Haddley K, Cardoso MC, Bubb VJ, et al. (2012) The SLC6A4 VNTR genotype determines transcription factor binding and epigenetic variation of this gene in response to cocaine in vitro. Addict Biol 17: 156–170. doi: 10.1111/j.1369-1600.2010.00288.x
[14]  Haddley K, Bubb VJ, Breen G, Parades-Esquivel UM, Quinn JP (2012) Behavioural Genetics of the Serotonin Transporter. Curr Top Behav Neurosci.
[15]  Ali FR, Vasiliou SA, Haddley K, Paredes UM, Roberts JC, et al. (2010) Combinatorial interaction between two human serotonin transporter gene variable number tandem repeats and their regulation by CTCF. J Neurochem 112: 296–306. doi: 10.1111/j.1471-4159.2009.06453.x
[16]  Miyajima F, Quinn JP, Horan M, Pickles A, Ollier WE, et al. (2008) Additive effect of BDNF and REST polymorphisms is associated with improved general cognitive ability. Genes Brain Behav 7: 714–719. doi: 10.1111/j.1601-183x.2008.00409.x
[17]  Roberts J, Scott AC, Howard MR, Breen G, Bubb VJ, et al. (2007) Differential regulation of the serotonin transporter gene by lithium is mediated by transcription factors, CCCTC binding protein and Y-box binding protein 1, through the polymorphic intron 2 variable number tandem repeat. J Neurosci 27: 2793–2801. doi: 10.1523/jneurosci.0892-06.2007
[18]  Guindalini C, Howard M, Haddley K, Laranjeira R, Collier D, et al. (2006) A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample. Proc Natl Acad Sci U S A 103: 4552–4557. doi: 10.1073/pnas.0504789103
[19]  Klenova E, Scott AC, Roberts J, Shamsuddin S, Lovejoy EA, et al. (2004) YB-1 and CTCF differentially regulate the 5-HTT polymorphic intron 2 enhancer which predisposes to a variety of neurological disorders. J Neurosci 24: 5966–5973. doi: 10.1523/jneurosci.1150-04.2004
[20]  MacKenzie A, Quinn JP (2004) Post-genomic approaches to exploring neuropeptide gene mis-expression in disease. Neuropeptides 38: 1–15. doi: 10.1016/j.npep.2003.09.004
[21]  Hing B, Davidson S, Lear M, Breen G, Quinn J, et al. (2012) A Polymorphism Associated with Depressive Disorders Differentially Regulates Brain Derived Neurotrophic Factor Promoter IV Activity. Biol Psychiatry 71: 618–626. doi: 10.1016/j.biopsych.2011.11.030
[22]  Doolittle WF (2013) Is junk DNA bunk? A critique of ENCODE. Proc Natl Acad Sci U S A.
[23]  Kavanagh DH, Dwyer S, O'Donovan MC, Owen MJ (2013) The ENCODE project: implications for psychiatric genetics. Mol Psychiatry.
[24]  Savage AL, Bubb VJ, Breen G, Quinn JP (2013) Characterisation of the potential function of SVA retrotransposons to modulate gene expression patterns. BMC Evol Biol 13: 101. doi: 10.1186/1471-2148-13-101
[25]  Hancks DC, Kazazian HH Jr (2012) Active human retrotransposons: variation and disease. Curr Opin Genet Dev 22: 191–203. doi: 10.1016/j.gde.2012.02.006
[26]  Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA, et al. (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479: 534–537. doi: 10.1038/nature10531
[27]  Faulkner GJ (2011) Retrotransposons: mobile and mutagenic from conception to death. FEBS Lett 585: 1589–1594. doi: 10.1016/j.febslet.2011.03.061
[28]  Szpakowski S, Sun X, Lage JM, Dyer A, Rubinstein J, et al. (2009) Loss of epigenetic silencing in tumors preferentially affects primate-specific retroelements. Gene 448: 151–167. doi: 10.1016/j.gene.2009.08.006
[29]  Wang H, Xing J, Grover D, Hedges DJ, Han K, et al. (2005) SVA elements: a hominid-specific retroposon family. J Mol Biol 354: 994–1007. doi: 10.1016/j.jmb.2005.09.085
[30]  Bantysh OB, Buzdin AA (2009) Novel family of human transposable elements formed due to fusion of the first exon of gene MAST2 with retrotransposon SVA. Biochemistry (Mosc) 74: 1393–1399. doi: 10.1134/s0006297909120153
[31]  Hancks DC, Ewing AD, Chen JE, Tokunaga K, Kazazian HH Jr (2009) Exon-trapping mediated by the human retrotransposon SVA. Genome Res 19: 1983–1991. doi: 10.1101/gr.093153.109
[32]  Damert A, Raiz J, Horn AV, Lower J, Wang H, et al. (2009) 5′-Transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res 19: 1992–2008. doi: 10.1101/gr.093435.109
[33]  Alfahad T, Nath A (2013) Retroviruses and amyotrophic lateral sclerosis. Antiviral Res 99: 180–187. doi: 10.1016/j.antiviral.2013.05.006
[34]  Steele AJ, Al-Chalabi A, Ferrante K, Cudkowicz ME, Brown RH Jr, et al. (2005) Detection of serum reverse transcriptase activity in patients with ALS and unaffected blood relatives. Neurology 64: 454–458. doi: 10.1212/01.wnl.0000150899.76130.71
[35]  Andrews WD, Tuke PW, Al-Chalabi A, Gaudin P, Ijaz S, et al. (2000) Detection of reverse transcriptase activity in the serum of patients with motor neurone disease. J Med Virol 61: 527–532. doi: 10.1002/1096-9071(200008)61:4<527::aid-jmv17>3.0.co;2-a
[36]  Douville R, Liu J, Rothstein J, Nath A (2011) Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann Neurol 69: 141–151. doi: 10.1002/ana.22149
[37]  Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. Journal of Morphology 88: 49–92. doi: 10.1002/jmor.1050880104
[38]  MacKenzie A, Quinn J (1999) A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer- like properties in the mouse embryo. Proc Natl Acad Sci U S A 96: 15251–15255. doi: 10.1073/pnas.96.26.15251
[39]  Uchikawa M (2008) Enhancer analysis by chicken embryo electroporation with aid of genome comparison. Dev Growth Differ 50: 467–474. doi: 10.1111/j.1440-169x.2008.01028.x
[40]  Uchikawa M, Ishida Y, Takemoto T, Kamachi Y, Kondoh H (2003) Functional analysis of chicken Sox2 enhancers highlights an array of diverse regulatory elements that are conserved in mammals. Dev Cell 4: 509–519. doi: 10.1016/s1534-5807(03)00088-1
[41]  Haddley K, Vasiliou AS, Ali FR, Paredes UM, Bubb VJ, et al. (2008) Molecular genetics of monoamine transporters: relevance to brain disorders. Neurochem Res 33: 652–667. doi: 10.1007/s11064-007-9521-8
[42]  Brotons O, O'Daly OG, Guindalini C, Howard M, Bubb J, et al. (2011) Modulation of orbitofrontal response to amphetamine by a functional variant of DAT1 and in vitro confirmation. Mol Psychiatry 16: 124–126. doi: 10.1038/mp.2009.6
[43]  Sham PC, Curtis D (1995) Monte Carlo tests for associations between disease and alleles at highly polymorphic loci. Ann Hum Genet 59: 97–105. doi: 10.1111/j.1469-1809.1995.tb01608.x
[44]  Paredes UM, Quinn JP, D'Souza UM (2012) Allele-specific transcriptional activity of the variable number of tandem repeats in 5′ region of the DRD4 gene is stimulus specific in human neuronal cells. Genes Brain Behav.
[45]  Michelhaugh SK, Fiskerstrand C, Lovejoy E, Bannon MJ, Quinn JP (2001) The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J Neurochem 79: 1033–1038. doi: 10.1046/j.1471-4159.2001.00647.x
[46]  Wray NR, James MR, Gordon SD, Dumenil T, Ryan L, et al. (2009) Accurate, Large-Scale Genotyping of 5HTTLPR and Flanking Single Nucleotide Polymorphisms in an Association Study of Depression, Anxiety, and Personality Measures. Biol Psychiatry 66: 468–476. doi: 10.1016/j.biopsych.2009.04.030
[47]  Wendland JR, Martin BJ, Kruse MR, Lesch KP, Murphy DL (2006) Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs25531. Mol Psychiatry 11: 224–226. doi: 10.1038/sj.mp.4001789

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133