[1] | Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, et al. (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10: 1135–1142. doi: 10.1111/j.1461-0248.2007.01113.x
|
[2] | Hell R, Hillebrand H (2001) Plant concepts for mineral acquisition and allocation. Current Opinion in Biotechnology 12: 161–168. doi: 10.1016/s0958-1669(00)00193-2
|
[3] | Smith S, Read D (2008) Mycorrhizal Symbiosis. New York: Academic Press.
|
[4] | Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytologist 154: 275–304. doi: 10.1046/j.1469-8137.2002.00397.x
|
[5] | Friese CF, Allen MF (1991) The spread of VA mycorrhizal fungal hyphae in the soil – Inoculum types and external hyphal architecture. Mycologia 83: 409–418. doi: 10.2307/3760351
|
[6] | Bago B, Azcon-Aguilar C, Goulet A, Piche Y (1998) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytologist 139: 375–388. doi: 10.1046/j.1469-8137.1998.00199.x
|
[7] | Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3–42. doi: 10.1007/s005720100097
|
[8] | Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, et al. (2006) Priming: Getting ready for battle. Molecular Plant-Microbe Interactions 19: 1062–1071. doi: 10.1094/mpmi-19-1062
|
[9] | Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. Journal of Chemical Ecology 38: 651–664. doi: 10.1007/s10886-012-0134-6
|
[10] | Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science 10: 22–29. doi: 10.1016/j.tplants.2004.12.003
|
[11] | Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, et al. (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 109: 2666–2671. doi: 10.1073/pnas.1118650109
|
[12] | Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proceedings of the National Academy of Sciences of the United States of America 107: 13754–13759. doi: 10.1073/pnas.1005874107
|
[13] | M?der P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, et al. (2000) Transport of N-15 from a soil compartment separated by a polytetrafluoro-ethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytologist 146: 155–161. doi: 10.1046/j.1469-8137.2000.00615.x
|
[14] | Müller A, George E, Gabriel-Neumann E (2013) The symbiotic recapture of nitrogen from dead mycorrhizal and non-mycorrhizal roots of tomato plants. Plant and Soil 364: 341–355. doi: 10.1007/s11104-012-1372-7
|
[15] | Govindarajulu M, Pfeffer PE, Jin HR, Abubaker J, Douds DD, et al. (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435: 819–823. doi: 10.1038/nature03610
|
[16] | Guether M, Neuhauser B, Balestrini R, Dynowski M, Ludewig U, et al. (2009) A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology 150: 73–83. doi: 10.1104/pp.109.136390
|
[17] | Tian CJ, Kasiborski B, Koul R, Lammers PJ, Bucking H, et al. (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: Gene characterization and the coordination of expression with nitrogen flux. Plant Physiology 153: 1175–1187. doi: 10.1104/pp.110.156430
|
[18] | Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiology 149: 549–560. doi: 10.1104/pp.108.129866
|
[19] | Sieh D, Watanabe M, Devers EA, Brueckner F, Hoefgen R, et al. (2013) The arbuscular mycorrhizal symbiosis influences sulfur starvation responses of Medicago truncatula. New Phytologist 197: 606–616. doi: 10.1111/nph.12034
|
[20] | Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23: 867–902. doi: 10.1080/01904160009382068
|
[21] | George E (2000) Nutrient uptake – Contributions of arbuscular mycorrhizal fungi to plant mineral nutrition. In: Kapulnik Y, Douds DD, editors. Arbuscular mycorrhizas: Physiology and function. Dordrecht: Kluwer Academic Publishers. 307–343.
|
[22] | Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: New paradigms from cellular to ecosystem scales. Annual Review of Plant Biology 62: 227–250. doi: 10.1146/annurev-arplant-042110-103846
|
[23] | Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology 133: 16–20. doi: 10.1104/pp.103.024380
|
[24] | Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162: 511–524. doi: 10.1111/j.1469-8137.2004.01039.x
|
[25] | Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84: 2292–2301. doi: 10.1890/02-0413
|
[26] | Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytologist 182: 347–358. doi: 10.1111/j.1469-8137.2008.02753.x
|
[27] | Alguacil MM, Lumini E, Roldan A, Salinas-Garcia JR, Bonfante P, et al. (2008) The impact of tillage practices on arbuscular mycorrhizal fungal diversity in subtropical crops. Ecological Applications 18: 527–536. doi: 10.1890/07-0521.1
|
[28] | Lin XG, Feng YZ, Zhang HY, Chen RR, Wang JH, et al. (2012) Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in north China revealed by 454 pyrosequencing. Environmental Science & Technology 46: 5764–5771. doi: 10.1021/es3001695
|
[29] | Liu YJ, Shi GX, Mao L, Cheng G, Jiang SJ, et al. (2012) Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem. New Phytologist 194: 523–535. doi: 10.1111/j.1469-8137.2012.04050.x
|
[30] | Abbott LK, Robson AD, De Boer G (1984) The effect of phosphorus on the formation of hyphae in soil by the vesicular arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytologist 97: 437–446. doi: 10.1111/j.1469-8137.1984.tb03609.x
|
[31] | Amijée F, Tinker PB, Stribley DP (1989) Effects of phosphorus on the morphology of VA mycorrhizal root-system of leek (Allium porrum L). Plant and Soil 119: 334–336. doi: 10.1007/bf02370427
|
[32] | Amijée F, Tinker PB, Stribley DP (1989) The development of endomycorrhizal root systems .7. A detailed study of effects of soil-phosphorus on colonization. New Phytologist 111: 435–446. doi: 10.1111/j.1469-8137.1989.tb00706.x
|
[33] | Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. Journal of Experimental Botany 62: 1049–1060. doi: 10.1093/jxb/erq335
|
[34] | Breuillin F, Schramm J, Hajirezaei M, Ahkami A, Favre P, et al. (2010) Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning. Plant Journal 64: 1002–1017. doi: 10.1111/j.1365-313x.2010.04385.x
|
[35] | Hepper CM (1983) The effect of nitrate and phosphate on the vesicular arbuscular mycorrhizal infection of lettuce. New Phytologist 93: 389–399. doi: 10.1111/j.1469-8137.1983.tb03439.x
|
[36] | Jasper DA, Robson AD, Abbott LK (1979) Phosphorus and the formation of vesicular-arbuscular mycorrhizas. Soil Biology & Biochemistry 11: 501–505. doi: 10.1016/0038-0717(79)90009-9
|
[37] | Menge JA, Steirle D, Bagyaraj DJ, Johnson ELV, Leonard RT (1978) Phosphorus concentrations in plants responsible for inhibition of mycorrhizal infection. New Phytologist 80: 575–578. doi: 10.1111/j.1469-8137.1978.tb01589.x
|
[38] | Thomson BD, Robson AD, Abbott LK (1986) Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytologist 103: 751–765. doi: 10.1111/j.1469-8137.1986.tb00850.x
|
[39] | Douds DD, Pfeffer PE, Shachar-Hill Y (2000) Carbon partitioning, cost, and metabolism of arbuscular mycorrhizas. In: Kapulnik Y, Douds DD, editors. Arbuscular Mycorrhizas: Physiology and Function. Dordrecht: Kluwer Academic Publishers.
|
[40] | Blanke V, Renker C, Wagner M, Fullner K, Held M, et al. (2005) Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytologist 166: 981–992. doi: 10.1111/j.1469-8137.2005.01374.x
|
[41] | Sekhara Reddy DMR, Schorderet M, Feller U, Reinhardt D (2007) A petunia mutant affected in intracellular accommodation and morphogenesis of arbuscular mycorrhizal fungi. Plant Journal 51: 739–750. doi: 10.1111/j.1365-313x.2007.03175.x
|
[42] | Stieger PA, Feller U (1994) Nutrient accumulation and translocation in maturing wheat plants grown on waterlogged soil. Plant and Soil 160: 87–95. doi: 10.1007/bf00150349
|
[43] | Bohley P (1967) Reihenbestimmungen von Stickstoff im Ultramikromassstab – Kjeldahlveraschung und Phenol-Hypochlorit-Reaktion. Hoppe-Seylers Zeitschrift für Physiologische Chemie 348: 100–110. doi: 10.1515/bchm2.1967.348.1.100
|
[44] | Verwoerd TC, Dekker BMM, Hoekema A (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucleic Acids Research 17: 2362–2362. doi: 10.1093/nar/17.6.2362
|
[45] | Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, et al. (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Research 12: 1749–1755. doi: 10.1101/gr.362402
|
[46] | Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4: 249–264. doi: 10.1093/biostatistics/4.2.249
|
[47] | Garcion C, Metraux JP (2006) FiRe and microarrays: a fast answer to burning questions. Trends in Plant Science 11: 320–322. doi: 10.1016/j.tplants.2006.05.009
|
[48] | Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C-T method. Nature Protocols 3: 1101–1108. doi: 10.1038/nprot.2008.73
|
[49] | Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters 8: 199–216. doi: 10.1007/s10311-010-0297-8
|
[50] | Güsewell S (2004) N:P ratios in terrestrial plants: variation and functional significance. New Phytologist 164: 243–266. doi: 10.1111/j.1469-8137.2004.01192.x
|
[51] | Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiology 6: 763–775. doi: 10.1038/nrmicro1987
|
[52] | Charpentier M, Oldroyd GE (2013) Nuclear calcium signaling in plants. Plant Physiology 163: 496–503. doi: 10.1104/pp.113.220863
|
[53] | Seddas P, Gianinazzi-Pearson V, Schoefs B, Kuster H, Wipf D (2009) Communication and signaling in the plant-fungus symbiosis: The mycorrhiza. In: Baluska F, editor. Plant-Environment Interactions: From Sensory Plant Biology to Active Plant Behavior. 45–71.
|
[54] | Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant, Cell and Environment 30: 310–322. doi: 10.1111/j.1365-3040.2006.01617.x
|
[55] | Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytologist 173: 11–26. doi: 10.1111/j.1469-8137.2006.01935.x
|
[56] | Lopez-Raez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, et al. (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytologist 178: 863–874. doi: 10.1111/j.1469-8137.2008.02406.x
|
[57] | Yoneyama K, Yoneyama K, Takeuchi Y, Sekimoto H (2007) Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225: 1031–1038. doi: 10.1007/s00425-006-0410-1
|
[58] | Yoneyama K, Xie XN, Kusumoto D, Sekimoto H, Sugimoto Y, et al. (2007) Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta 227: 125–132. doi: 10.1007/s00425-007-0600-5
|
[59] | Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiology Ecology 72: 123–131. doi: 10.1111/j.1574-6941.2009.00833.x
|
[60] | Egerton-Warburton LM, Graham RC, Allen EB, Allen MF (2001) Reconstruction of the historical changes in mycorrhizal fungal communities under anthropogenic nitrogen deposition. Proceedings of the Royal Society B-Biological Sciences 268: 2479–2484. doi: 10.1098/rspb.2001.1814
|
[61] | van Diepen LTA, Lilleskov EA, Pregitzer KS, Miller RM (2007) Decline of arbuscular mycorrhizal fungi in northern hardwood forests exposed to chronic nitrogen additions. New Phytologist 176: 175–183. doi: 10.1111/j.1469-8137.2007.02150.x
|
[62] | Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science 11: 610–617. doi: 10.1016/j.tplants.2006.10.007
|
[63] | Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytologist 181: 35–52. doi: 10.1111/j.1469-8137.2008.02666.x
|
[64] | Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America 93: 10519–10523. doi: 10.1073/pnas.93.19.10519
|
[65] | Muchhal US, Raghothama KG (1999) Transcriptional regulation of plant phosphate transporters. Proceedings of the National Academy of Sciences of the United States of America 96: 5868–5872. doi: 10.1073/pnas.96.10.5868
|
[66] | Cai HM, Lu YG, Xie WB, Zhu T, Lian XM (2012) Transcriptome response to nitrogen starvation in rice. Journal of Biosciences 37: 731–747. doi: 10.1007/s12038-012-9242-2
|
[67] | Kiba T, Feria-Bourrellier AB, Lafouge F, Lezhneva L, Boutet-Mercey S, et al. (2012) The Arabidopsis nitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants. Plant Cell 24: 245–258. doi: 10.1105/tpc.111.092221
|
[68] | Remans T, Nacry P, Pervent M, Girin T, Tillard P, et al. (2006) A central role for the nitrate transporter NRT2.1 in the integrated morphological and physiological responses of the root system to nitrogen limitation in Arabidopsis. Plant Physiology 140: 909–921. doi: 10.1104/pp.105.075721
|
[69] | Sugiura M, Georgescu MN, Takahashi M (2007) A nitrite transporter associated with nitrite uptake by higher plant chloroplasts. Plant and Cell Physiology 48: 1022–1035. doi: 10.1093/pcp/pcm073
|
[70] | Bouguyon E, Gojon A, Nacry P (2012) Nitrate sensing and signaling in plants. Seminars in Cell & Developmental Biology 23: 648–654. doi: 10.1016/j.semcdb.2012.01.004
|
[71] | Gojon A, Krouk G, Perrine-Walker F, Laugier E (2011) Nitrate transceptor(s) in plants. Journal of Experimental Botany 62: 2299–2308. doi: 10.1093/jxb/erq419
|
[72] | Wang RC, Xing XJ, Wang Y, Tran A, Crawford NM (2009) A genetic screen for nitrate regulatory mutants captures the nitrate transporter gene NRT1.1. Plant Physiology 151: 472–478. doi: 10.1104/pp.109.140434
|
[73] | Dechorgnat J, Nguyen CT, Armengaud P, Jossier M, Diatloff E, et al. (2011) From the soil to the seeds: the long journey of nitrate in plants. Journal of Experimental Botany 62: 1349–1359. doi: 10.1093/jxb/erq409
|
[74] | Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Letters 581: 2290–2300. doi: 10.1016/j.febslet.2007.04.047
|
[75] | Baath E, Spokes J (1989) The effect of added nitrogen and phosphorus on mycorrhizal growth-response and infection in Allium schoenoprasum. Canadian Journal of Botany 67: 3227–3232. doi: 10.1139/b89-402
|
[76] | Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytologist 185: 631–647. doi: 10.1111/j.1469-8137.2009.03110.x
|
[77] | Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America 104: 1720–1725. doi: 10.1073/pnas.0608136104
|
[78] | Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, et al. (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant and Cell Physiology 47: 807–817. doi: 10.1093/pcp/pcj069
|
[79] | Yang SY, Gronlund M, Jakobsen I, Grotemeyer MS, Rentsch D, et al. (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the PHOSPHATE TRANSPORTER1 gene family. Plant Cell 24: 4236–4251. doi: 10.1105/tpc.112.104901
|
[80] | Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, et al. (2005) A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiol 138: 2061–2074. doi: 10.1104/pp.105.060061
|
[81] | Nagy F, Karandashov V, Chague W, Kalinkevich K, Tamasloukht M, et al. (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant Journal 42: 236–250. doi: 10.1111/j.1365-313x.2005.02364.x
|
[82] | Chen A, Hu J, Sun S, Xu G (2007) Conservation and divergence of both phosphate- and mycorrhiza-regulated physiological responses and expression patterns of phosphate transporters in solanaceous species. New Phytologist 173: 817–831. doi: 10.1111/j.1469-8137.2006.01962.x
|
[83] | Wegmüller S, Svistoonoff S, Reinhardt D, Stuurman J, Amrhein N, et al. (2008) A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant Journal 54: 1115–1127. doi: 10.1111/j.1365-313x.2008.03474.x
|
[84] | Clark RB, Zeto SK (1996) Mineral acquisition by mycorrhizal maize grown on acid and alkaline soil. Soil Biology & Biochemistry 28: 1495–1503. doi: 10.1016/s0038-0717(96)00163-0
|
[85] | Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Science and Plant Nutrition 49: 655–668. doi: 10.1080/00380768.2003.10410323
|
[86] | Angelard C, Colard A, Niculita-Hirzel H, Croll D, Sanders IR (2010) Segregation in a mycorrhizal fungus alters rice growth and symbiosis-specific gene transcription. Current Biology 20: 1216–1221. doi: 10.1016/j.cub.2010.05.031
|
[87] | Sawers RJH, Gebreselassie MN, Janos DP, Paszkowski U (2010) Characterizing variation in mycorrhiza effect among diverse plant varieties. Theoretical and Applied Genetics 120: 1029–1039. doi: 10.1007/s00122-009-1231-y
|
[88] | Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism?parasitism continuum. New Phytologist 135: 575–586. doi: 10.1046/j.1469-8137.1997.00729.x
|