全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

HIV-1 Subtypes B and C Unique Recombinant Forms (URFs) and Transmitted Drug Resistance Identified in the Western Cape Province, South Africa

DOI: 10.1371/journal.pone.0090845

Full-Text   Cite this paper   Add to My Lib

Abstract:

South Africa has the largest worldwide HIV/AIDS population with 5.6 million people infected and at least 2 million people on antiretroviral therapy. The majority of these infections are caused by HIV-1 subtype C. Using genotyping methods we characterized HIV-1 subtypes of the gag p24 and pol PR and RT fragments, from a cohort of female participants in the Western Cape Province, South Africa. These participants were recruited as part of a study to assess the combined brain and behavioural effects of HIV and early childhood trauma. The partial HIV-1 gag and pol fragments of 84 participants were amplified by PCR and sequenced. Different online tools and manual phylogenetic analysis were used for HIV-1 subtyping. Online tools included: REGA HIV Subtyping tool version 3; Recombinant Identification Program (RIP); Context-based Modeling for Expeditious Typing (COMET); jumping profile Hidden Markov Models (jpHMM) webserver; and subtype classification using evolutionary algorithms (SCUEAL). HIV-1 subtype C predominates within the cohort with a prevalence of 93.8%. We also show, for the first time, the presence of circulating BC strains in at least 4.6% of our study cohort. In addition, we detected transmitted resistance associated mutations in 4.6% of analysed sequences. With tourism and migration rates to South Africa currently very high, we are detecting more and more HIV-1 URFs within our study populations. It is stil unclear what role these unique strains will play in terms of long term antiretroviral treatment and what challenges they will pose to vaccine development. Nevertheless, it remains vitally important to monitor the HIV-1 diversity in South Africa and worldwide as the face of the epidemic is continually changing.

References

[1]  UNAIDS/WHO working group on global HIV/AIDS & STD surveillance. (2012) AIDS epidemic update. Geneva, Switzerland, December 2012. Available: http://www.unaids.org/en/resources/publi?cations/2012/name,76121,en.asp. Accessed 10 January 2014.
[2]  National Strategic Plan for HIV and AIDS, STIs and TB, 2012–2016 (2011) Directorate Health Systems Research, Department of Health, Pretoria, South Africa. Available: http://www.hst.org.za/publications/natio?nal-strategic-plan-hiv-stis-and-tb-2012-?2016. Accessed 10 January 2014.
[3]  South African Department of Health/Directorate Health Systems Research (2012) The 2011 National Antenatal Sentinel HIV & Syphilis Prevalence Survey in South Africa. Directorate Health Systems Research, Department of Health, Pretoria, South Africa. Available: http://www.health.gov.za/docs/reports/20?13/Antenatal_survey_report_2012_web_opti?mized.pdf. Accessed 10 January 2014.
[4]  Hemelaar J, Gouws E, Ghys PD, Osmanov S (2011) Global trends in molecular epidemiology of HIV-1 during 2000–2007. AIDS 25: 679–689. doi: 10.1097/qad.0b013e328342ff93
[5]  Preston BD, Poiesz BJ, Loeb LA (1988) Fidelity of HIV-1 reverse transcriptase. Science 242: 1168–1171. doi: 10.1126/science.2460924
[6]  Zhang M, Foley B, Schultz A, Macke JP, Bulla I, et al. (2010) The role of recombination in the emergence of a complex and dynamic HIV epidemic. Retrovirology 7: 25 doi: 10.1186/1742-4690-7-25.
[7]  Santos AF, Soares MA (2010) HIV genetic diversity and drug resistance. Viruses 2: 503–531. doi: 10.3390/v2020503
[8]  Jacobs GB, Loxton AG, Laten A, Robson B, Janse Van Rensburg E, et al. (2009) Emergence and diversity of different HIV-1 subtypes in South Africa, 2000–2001. J Med Virol 81: 1852–1859. doi: 10.1002/jmv.21609
[9]  Williamson C, Engelbrecht S, Lambrick M, Van Rensburg EJ, Wood R, et al. (1995) HIV-1 subtypes in different risk groups in South Africa. Lancet 346: 782. doi: 10.1016/s0140-6736(95)91543-5
[10]  Wilkinson E, Engelbrecht S (2009) Molecular characterization of non-subtype C and recombinant HIV-1 viruses from Cape Town, South Africa. Infect Genet Evol. 9: 840–846. doi: 10.1016/j.meegid.2009.05.001
[11]  Iweriebor BC, Bessong PO, Mavhandu LG, Masebe TM, Nwobegahay J, et al. (2011) Genetic analysis of the near full-length genome of an HIV type 1 A1/C unique recombinant form from northern South Africa. AIDS Res Hum Retroviruses 27: 911–915. doi: 10.1089/aid.2010.0286
[12]  Engelbrecht S, Laten JD, Smith TL, Van Rensburg EJ (1995) Identification of env subtypes in fourteen HIV type 1 isolates from South Africa. AIDS Res Hum Retroviruses 11: 1269–1271. doi: 10.1089/aid.1995.11.1269
[13]  Jacobs GB, De Beer C, Fincham JE, Adams V, Dhansay MA, et al. (2006) Serotyping and genotyping of HIV-1 infection in residents of Khayelitsha, Cape Town, South Africa. J Med Virol 78: 1529–1536. doi: 10.1002/jmv.20735
[14]  Loxton AG, Treurnicht F, Laten A, Van Rensburg EJ, Engelbrecht S (2005) Sequence analysis of near full-length HIV type 1 subtype D primary strains isolated in Cape Town, South Africa, from 1984 to 1986. AIDS Res Hum Retroviruses 21: 410–413. doi: 10.1089/aid.2005.21.410
[15]  Bredell H, Martin DJ, Williamson C, Morris L, Hunt G, et al. (2002) HIV-1 subtype A, D, G, AG and unclassified sequences identified in South Africa. AIDS Res Hum Retroviruses 18: 681–683. doi: 10.1089/088922202760019400
[16]  Papathanasopoulos MA, Cilliers T, Morris L, Mokili JL, Dowling W, et al. (2002) Full-length genome analysis of HIV-1 subtype C utilizing CXCR4 and intersubtype recombinants isolated in South Africa. AIDS Res Hum Retroviruses 18: 879–886. doi: 10.1089/08892220260190362
[17]  Van Harmelen JH, Van Der Ryst E, Loubser AS, York D, Madurai S, et al. (1999) A predominantly HIV type 1 subtype C-restricted epidemic in South African urban populations. AIDS Res Hum Retroviruses 15: 395–398. doi: 10.1089/088922299311376
[18]  Swanson P, Devare SG, Hackett Jr J (2003) Molecular characterization of 39 HIV-1 isolates representing group M (subtypes A-G) and group O: Sequence analysis of gag p24, pol integrase, and env gp41. AIDS Res Hum Retroviruses 19: 625–629. doi: 10.1089/088922203322231003
[19]  Jacobs GB, Laten A, Van Rensburg EJ, Bodem J, Weissbrich B, et al. (2008) Phylogenetic diversity and low level antiretroviral resistance mutations in HIV type 1 treatment-naive patients from Cape Town, South Africa. AIDS Res Hum Retroviruses 24: 1009–1012. doi: 10.1089/aid.2008.0028
[20]  Pe?a ACP, Faria NR, Imbrechts S, Libin P, Abecasis AB, et al. (2013) Performance of the Subtyping Tools in the Surveillance of HIV-1 Epidemic: Comparison Between Rega Version 3 and Six Other Automated Tools to Identify Pure Subtypes and Circulating Recombinant Forms. Infect Genet Evol. 19: 337–48.
[21]  Holguin A, Lopez M, Soriano V (2008) Reliability of rapid subtyping tools compared to that of phylogenetic analysis for characterization of human immunodeficiency virus type 1 non-B subtypes and recombinant forms. J Clin Microbiol 46: 3896–3899. doi: 10.1128/jcm.00515-08
[22]  Schultz AK, Zhang M, Bulla I, Leitner T, Korber B, et al. (2009) jpHMM: Improving the reliability of recombination prediction in HIV-1. Nucleic Acids Research 37: W647–W651. doi: 10.1093/nar/gkp371
[23]  Bulla I, Schultz AK, Meinicke P (2012) Improving Hidden Markov Models for classification of human immunodeficiency virus-1 subtypes through linear classifier learning. Stat Appl Genet Mol Biol. 11(1) doi: 10.2202/1544-6115.1680.
[24]  Kosakovsky Pond SL, Posada D, Stawiski E, Chappey C, Poon AF, et al. (2009) An evolutionary model-based algorithm for accurate phylogenetic breakpoint mapping and subtype prediction in HIV-1. PLoS Comput Biol 5: e1000581. doi: 10.1371/journal.pcbi.1000581
[25]  Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. doi: 10.1093/bioinformatics/btm404
[26]  Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321.
[27]  Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. doi: 10.1093/bioinformatics/17.8.754
[28]  Darriba D, Taboada GL, Doallo R, Posada D (2012) JModelTest 2: More models, new heuristics and parallel computing. Nature Methods 9: 772. doi: 10.1038/nmeth.2109
[29]  Guindon S, Gascuel O (2003) A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology 52: 696–704.
[30]  Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42: 182–192.
[31]  De Oliveira T, Shafer RW, Seebregts C (2010) Public database for HIV drug resistance in southern Africa. Nature 464: 673. doi: 10.1038/464673c
[32]  van Harmelen J, Wood R, Lambrick M, Rybicki EP, Williamson AL, et al. (1997) An association between HIV-1 subtypes and mode of transmission in Cape Town, South Africa. AIDS 11: 81–87. doi: 10.1097/00002030-199701000-00012
[33]  Rodenburg CM, Li Y, Trask SA, Chen Y, Decker J, et al. (2001) Near full-length clones and reference sequences for subtype C isolates of HIV type 1 from three different continents. AIDS Research and Human Retroviruses 17: 161–168. doi: 10.1089/08892220150217247
[34]  Santos AF, Sousa TM, Soares EA, Sanabani S, Martinez AM, et al. (2006) Characterization of a new circulating recombinant form comprising HIV-1 subtypes C and B in southern Brazil. AIDS 20: 2011–2019.
[35]  Van Harmelen J, Williamson C, Kim B, Morris L, Carr J, et al. (2001) Characterization of full-length HIV type 1 subtype C sequences from South Africa. AIDS Res and Hum Retroviruses 17: 1527–1531. doi: 10.1089/08892220152644232
[36]  Novitsky VA, Montano MA, McLane MF, Renjifo B, Vannberg F, et al. (1999) Molecular cloning and phylogenetic analysis of human immunodeficiency virus type 1 subtype C: A set of 23 full-length clones from Botswana. J Virol 73: 4427–4432.
[37]  Ntemgwa M, Gill MJ, Brenner BG, Moisi D, Wainberg MA (2008) Discrepancies in assignment of subtype/recombinant forms by genotyping programs for HIV type 1 drug resistance testing may falsely predict superinfection. AIDS Res Hum Retroviruses 24: 995–1002. doi: 10.1089/aid.2008.0064
[38]  Jacobs GB, Laten A, van Rensburg EJ, Bodem J, Weissbrich B, et al. (2008) Phylogenetic diversity and low level antiretroviral resistance mutations in HIV type 1 treatment-naive patients from Cape Town, South Africa. AIDS Res Hum Retroviruses 24: 1009–1012. doi: 10.1089/aid.2008.0028
[39]  Lessells R, Katzenstein D, de Oliveira T (2012) Are subtype differences important in HIV drug resistance? Curr Opin Virol 2: 636–643. doi: 10.1016/j.coviro.2012.08.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133