全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
PLOS ONE  2014 

Shedding Some Light over the Floral Metabolism by Arum Lily (Zantedeschia aethiopica) Spathe De Novo Transcriptome Assembly

DOI: 10.1371/journal.pone.0090487

Full-Text   Cite this paper   Add to My Lib

Abstract:

Zantedeschia aethiopica is an evergreen perennial plant cultivated worldwide and commonly used for ornamental and medicinal purposes including the treatment of bacterial infections. However, the current understanding of molecular and physiological mechanisms in this plant is limited, in comparison to other non-model plants. In order to improve understanding of the biology of this botanical species, RNA-Seq technology was used for transcriptome assembly and characterization. Following Z. aethiopica spathe tissue RNA extraction, high-throughput RNA sequencing was performed with the aim of obtaining both abundant and rare transcript data. Functional profiling based on KEGG Orthology (KO) analysis highlighted contigs that were involved predominantly in genetic information (37%) and metabolism (34%) processes. Predicted proteins involved in the plant circadian system, hormone signal transduction, secondary metabolism and basal immunity are described here. In silico screening of the transcriptome data set for antimicrobial peptide (AMP) –encoding sequences was also carried out and three lipid transfer proteins (LTP) were identified as potential AMPs involved in plant defense. Spathe predicted protein maps were drawn, and suggested that major plant efforts are expended in guaranteeing the maintenance of cell homeostasis, characterized by high investment in carbohydrate, amino acid and energy metabolism as well as in genetic information.

References

[1]  Singh K, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5: 430–436. doi: 10.1016/s1369-5266(02)00289-3
[2]  Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, et al. (2011) Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. Plant Physiol 156: 1508–1519. doi: 10.1104/pp.111.176776
[3]  Tavares LS, Santos Mde O, Viccini LF, Moreira JS, Miller RN, et al. (2008) Biotechnological potential of antimicrobial peptides from flowers. Peptides 29: 1842–1851. doi: 10.1016/j.peptides.2008.06.003
[4]  Stotz HU, Spence B, Wang Y (2009) A defensin from tomato with dual function in defense and development. Plant Mol Biol 71: 131–143. doi: 10.1007/s11103-009-9512-z
[5]  Rahnamaeian M (2011) Antimicrobial peptides: modes of mechanism, modulation of defense responses. Plant Signal Behav 6: 1325–1332. doi: 10.4161/psb.6.9.16319
[6]  Ge X, Chen J, Li N, Lin Y, Sun C, et al. (2003) Resistance function of rice lipid transfer protein LTP110. J Biochem Mol Biol 36: 603–607. doi: 10.5483/bmbrep.2003.36.6.603
[7]  Liu Y, Li X, Tan H, Liu M, Zhao X, et al. (2010) Molecular characterization of RsMPK2, a C1 subgroup mitogen-activated protein kinase in the desert plant Reaumuria soongorica. Plant Physiol Biochem 48: 836–844. doi: 10.1016/j.plaphy.2010.07.001
[8]  Hutchings A, Haxton Scoot A, Lewis G, Cunningham A (1996) Zulu medicinal plants: An inventory. South Africa: University of Natal Press. 464 p.
[9]  Wei ZZ, Luo LB, Zhang HL, Xiong M, Wang X, et al. (2012) Identification and characterization of 43 novel polymorphic EST-SSR markers for arum lily, Zantedeschia aethiopica (Araceae). Am J Bot 99: e493–497. doi: 10.3732/ajb.1200228
[10]  Munoz-Merida A, Gonzalez-Plaza JJ, Canada A, Blanco AM, Garcia-Lopez MD, et al.. (2013) De Novo Assembly and Functional Annotation of the Olive (Olea europaea) Transcriptome. DNA Res.
[11]  Lee J, Noh EK, Choi HS, Shin SC, Park H, et al.. (2012) Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress. Planta.
[12]  Zhai R, Feng Y, Wang H, Zhan X, Shen X, et al. (2013) Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics 14: 19. doi: 10.1186/1471-2164-14-19
[13]  Zeng J, Liu Y, Liu W, Liu X, Liu F, et al. (2013) Integration of Transcriptome, Proteome and Metabolism Data Reveals the Alkaloids Biosynthesis in Macleaya cordata and Macleaya microcarpa. PLoS One 8: e53409. doi: 10.1371/journal.pone.0053409
[14]  Meyer E, Logan TL, Juenger TE (2012) Transcriptome analysis and gene expression atlas for Panicum hallii var. filipes, a diploid model for biofuel research. Plant J 70: 879–890. doi: 10.1111/j.1365-313x.2012.04938.x
[15]  Lin L, Liu XF, Hu LC, Zhou Y, Sun XF, et al. (2009) Expression and purification of Zantedeschia aethiopica agglutinin in Escherichia coli. Mol Biol Rep 36: 437–441. doi: 10.1007/s11033-007-9198-8
[16]  Yi O, Jovel EM, Towers GH, Wahbe TR, Cho D (2007) Antioxidant and antimicrobial activities of native Rosa sp. from British Columbia, Canada. Int J Food Sci Nutr 58: 178–189. doi: 10.1080/09637480601121318
[17]  Anesini C, Perez C (1993) Screening of plants used in Argentine folk medicine for antimicrobial activity. J Ethnopharmacol 39: 119–128. doi: 10.1016/0378-8741(93)90027-3
[18]  Curir P, Dolci M, Dolci P, Lanzotti V, De Cooman L (2003) Fungitoxic phenols from carnation (Dianthus caryophyllus) effective against Fusarium oxysporum f. sp. dianthi. Phytochem Anal 14: 8–12. doi: 10.1002/pca.672
[19]  Mohammed MJ, Al-Bayati FA (2009) Isolation and identification of antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds. Phytomedicine 16: 632–637. doi: 10.1016/j.phymed.2008.12.026
[20]  Dhankhar S, Dhankhar S, Kumar M, Ruhil S, Balhara M, et al. (2012) Analysis toward innovative herbal antibacterial & antifungal drugs. Recent Pat Antiinfect Drug Discov 7: 242–248. doi: 10.2174/157489112803521931
[21]  Verma AK, Singh RR (2010) Induced Dwarf Mutant in Catharanthus roseus with Enhanced Antibacterial Activity. Indian J Pharm Sci 72: 655–657. doi: 10.4103/0250-474x.78541
[22]  Ahmed AS, Elgorashi EE, Moodley N, McGaw LJ, Naidoo V, et al. (2012) The antimicrobial, antioxidative, anti-inflammatory activity and cytotoxicity of different fractions of four South African Bauhinia species used traditionally to treat diarrhoea. J Ethnopharmacol 143: 826–839. doi: 10.1016/j.jep.2012.08.004
[23]  Bhuvaneshwari L, Arthy E, Anitha C, Dhanabalan K, Meena M (2007) Phytochemical analysis & Antibacterial activity of Nerium oleander. Anc Sci Life 26: 24–28.
[24]  Avato P, Vitali C, Mongelli P, Tava A (1997) Antimicrobial activity of polyacetylenes from Bellis perennis and their synthetic derivatives. Planta Med 63: 503–507. doi: 10.1055/s-2006-957751
[25]  Setzer MC, Werka JS, Irvine AK, Jackes BR, Setzer WN (2006) Biological activity of rainforest plant extracts from far north Queensland, Australia. In: Williams LAD, Reese PB, editors. Biologically active natural products for the 21st century. pp. 21–46.
[26]  Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12: 671–682. doi: 10.1038/nrg3068
[27]  Lohse M, Bolger AM, Nagel A, Fernie AR, Lunn JE, et al. (2012) RobiNA: a user-friendly, integrated software solution for RNA-Seq-based transcriptomics. Nucleic Acids Res 40: W622–627. doi: 10.1093/nar/gks540
[28]  Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29: 644–652. doi: 10.1038/nbt.1883
[29]  Zhang XM, Zhao L, Larson-Rabin Z, Li DZ, Guo ZH (2012) De novo sequencing and characterization of the floral transcriptome of Dendrocalamus latiflorus (Poaceae: Bambusoideae). PLoS One 7: e42082. doi: 10.1371/journal.pone.0042082
[30]  Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, et al. (2013) De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8: 1494–1512. doi: 10.1038/nprot.2013.084
[31]  Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, et al. (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Plant Physiol 156: 1661–1678. doi: 10.1104/pp.111.178616
[32]  Lulin H, Xiao Y, Pei S, Wen T, Shangqin H (2012) The first Illumina-based de novo transcriptome sequencing and analysis of safflower flowers. PLoS One 7: e38653. doi: 10.1371/journal.pone.0038653
[33]  Chou ML, Shih MC, Chan MT, Liao SY, Hsu CT, et al.. (2013) Global transcriptome analysis and identification of a CONSTANS-like gene family in the orchid Erycina pusilla. Planta.
[34]  Yan X, Dong C, Yu J, Liu W, Jiang C, et al. (2013) Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus. BMC Genomics 14: 26. doi: 10.1186/1471-2164-14-26
[35]  Fu J, Wang S (2011) Insights into auxin signaling in plant-pathogen interactions. Front Plant Sci 2: 74. doi: 10.3389/fpls.2011.00074
[36]  Hanson AD, Gregory JF 3rd (2002) Synthesis and turnover of folates in plants. Curr Opin Plant Biol 5: 244–249. doi: 10.1016/s1369-5266(02)00249-2
[37]  Zhang SW, Li CH, Cao J, Zhang YC, Zhang SQ, et al. (2009) Altered architecture and enhanced drought tolerance in rice via the down-regulation of indole-3-acetic acid by TLD1/OsGH3.13 activation. Plant Physiol 151: 1889–1901. doi: 10.1104/pp.109.146803
[38]  Hirano K, Ueguchi-Tanaka M, Matsuoka M (2008) GID1-mediated gibberellin signaling in plants. Trends Plant Sci 13: 192–199. doi: 10.1016/j.tplants.2008.02.005
[39]  Donaldson JG, Jackson CL (2011) ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat Rev Mol Cell Biol 12: 362–375. doi: 10.1038/nrm3117
[40]  Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136: 1005–1016. doi: 10.1016/j.cell.2009.03.001
[41]  Leyser O (2006) Dynamic integration of auxin transport and signalling. Curr Biol 16: R424–433. doi: 10.1016/j.cub.2006.05.014
[42]  Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680. doi: 10.1093/nar/22.22.4673
[43]  Roenneberg T, Merrow M (1999) Circadian systems and metabolism. J Biol Rhythms 14: 449–459. doi: 10.1177/074873099129001019
[44]  Burgess A, Searle I (2011) The clock primes defense at dawn. Immunol Cell Biol 89: 661–662. doi: 10.1038/icb.2011.30
[45]  Dodd AN, Salathia N, Hall A, Kevei E, Toth R, et al. (2005) Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309: 630–633. doi: 10.1126/science.1115581
[46]  Jiao Y, Lau OS, Deng XW (2007) Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8: 217–230. doi: 10.1038/nrg2049
[47]  Yang CQ, Fang X, Wu XM, Mao YB, Wang LJ, et al. (2012) Transcriptional regulation of plant secondary metabolism. J Integr Plant Biol 54: 703–712. doi: 10.1111/j.1744-7909.2012.01161.x
[48]  Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, et al. (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7: 1555–1567. doi: 10.2307/3870019
[49]  Annadurai RS, Jayakumar V, Mugasimangalam RC, Katta MA, Anand S, et al. (2012) Next generation sequencing and de novo transcriptome analysis of Costus pictus D. Don, a non-model plant with potent anti-diabetic properties. BMC Genomics 13: 663. doi: 10.1186/1471-2164-13-663
[50]  Pieterse CMJ, Ton J, Van Loon LC (2001) Cross-talk between plant defence signalling pathways: boost or burden? AgBiotechNet 3: 1–8.
[51]  Pirrello J, Prasad BC, Zhang W, Chen K, Mila I, et al. (2012) Functional analysis and binding affinity of tomato ethylene response factors provide insight on the molecular bases of plant differential responses to ethylene. BMC Plant Biol 12: 190. doi: 10.1186/1471-2229-12-190
[52]  Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703–3714. doi: 10.1101/gad.12.23.3703
[53]  Ohta M, Ohme-Takagi M, Shinshi H (2000) Three ethylene-responsive transcription factors in tobacco with distinct transactivation functions. Plant J 22: 29–38. doi: 10.1046/j.1365-313x.2000.00709.x
[54]  Oh Y, Baldwin IT, Galis I (2013) A Jasmonate ZIM-Domain Protein NaJAZd Regulates Floral Jasmonic Acid Levels and Counteracts Flower Abscission in Nicotiana attenuata Plants. PLoS One 8: e57868. doi: 10.1371/journal.pone.0057868
[55]  Pauwels L, Goossens A (2011) The JAZ proteins: a crucial interface in the jasmonate signaling cascade. Plant Cell 23: 3089–3100. doi: 10.1105/tpc.111.089300
[56]  Karlova R, de Vries SC (2006) Advances in understanding brassinosteroid signaling. Sci STKE 2006: pe36. doi: 10.1126/stke.3542006pe36
[57]  Gimenez-Ibanez S, Ntoukakis V, Rathjen JP (2009) The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signal Behav 4: 539–541. doi: 10.4161/psb.4.6.8697
[58]  Oh MH, Wang X, Wu X, Zhao Y, Clouse SD, et al. (2010) Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc Natl Acad Sci U S A 107: 17827–17832. doi: 10.1073/pnas.0915064107
[59]  Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20: 10–16. doi: 10.1016/j.coi.2007.11.003
[60]  Albrecht C, Boutrot F, Segonzac C, Schwessinger B, Gimenez-Ibanez S, et al. (2012) Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc Natl Acad Sci U S A 109: 303–308. doi: 10.1073/pnas.1109921108
[61]  Belkhadir Y, Chory J (2006) Brassinosteroid signaling: a paradigm for steroid hormone signaling from the cell surface. Science 314: 1410–1411. doi: 10.1126/science.1134040
[62]  Iliev EA, Xu W, Polisensky DH, Oh MH, Torisky RS, et al. (2002) Transcriptional and posttranscriptional regulation of Arabidopsis TCH4 expression by diverse stimuli. Roles of cis regions and brassinosteroids. Plant Physiol 130: 770–783. doi: 10.1104/pp.008680
[63]  Park JE, Park JY, Kim YS, Staswick PE, Jeon J, et al. (2007) GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J Biol Chem 282: 10036–10046. doi: 10.1074/jbc.m610524200
[64]  Zhang Z, Li Q, Li Z, Staswick PE, Wang M, et al. (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145: 450–464. doi: 10.1104/pp.107.106021
[65]  Fu J, Liu H, Li Y, Yu H, Li X, et al. (2011) Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice. Plant Physiol 155: 589–602. doi: 10.1104/pp.110.163774
[66]  Park J, Nguyen KT, Park E, Jeon JS, Choi G (2013) DELLA Proteins and Their Interacting RING Finger Proteins Repress Gibberellin Responses by Binding to the Promoters of a Subset of Gibberellin-Responsive Genes in Arabidopsis. Plant Cell.
[67]  Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M (2007) Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol 58: 183–198. doi: 10.1146/annurev.arplant.58.032806.103830
[68]  Zipfel C (2009) Early molecular events in PAMP-triggered immunity. Curr Opin Plant Biol 12: 414–420. doi: 10.1016/j.pbi.2009.06.003
[69]  Takai R, Isogai A, Takayama S, Che FS (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant Microbe Interact 21: 1635–1642. doi: 10.1094/mpmi-21-12-1635
[70]  Hann DR, Rathjen JP (2007) Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. Plant J 49: 607–618. doi: 10.1111/j.1365-313x.2006.02981.x
[71]  de Torres M, Mansfield JW, Grabov N, Brown IR, Ammouneh H, et al. (2006) Pseudomonas syringae effector AvrPtoB suppresses basal defence in Arabidopsis. Plant J 47: 368–382. doi: 10.1111/j.1365-313x.2006.02798.x
[72]  Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JD, et al. (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764–767. doi: 10.1038/nature02485
[73]  Li X, Lin H, Zhang W, Zou Y, Zhang J, et al. (2005) Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. Proc Natl Acad Sci U S A 102: 12990–12995. doi: 10.1073/pnas.0502425102
[74]  Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, et al. (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749–760. doi: 10.1016/j.cell.2006.03.037
[75]  Spoel SH, Dong X (2012) How do plants achieve immunity? Defence without specialized immune cells. Nat Rev Immunol 12: 89–100. doi: 10.1038/nri3141
[76]  Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, et al. (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104: 19613–19618. doi: 10.1073/pnas.0705147104
[77]  Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, et al. (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20: 471–481. doi: 10.1105/tpc.107.056754
[78]  Gimenez-Ibanez S, Hann DR, Ntoukakis V, Petutschnig E, Lipka V, et al. (2009) AvrPtoB targets the LysM receptor kinase CERK1 to promote bacterial virulence on plants. Curr Biol 19: 423–429. doi: 10.1016/j.cub.2009.01.054
[79]  Ishihama N, Yoshioka H (2012) Post-translational regulation of WRKY transcription factors in plant immunity. Curr Opin Plant Biol 15: 431–437. doi: 10.1016/j.pbi.2012.02.003
[80]  Takechi K, Sakamoto W, Utsugi S, Murata M, Motoyoshi F (1999) Characterization of a flower-specific gene encoding a putative myrosinase binding protein in Arabidopsis thaliana. Plant Cell Physiol 40: 1287–1296. doi: 10.1093/oxfordjournals.pcp.a029517
[81]  Nguyen GK, Zhang S, Nguyen NT, Nguyen PQ, Chiu MS, et al. (2011) Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. J Biol Chem 286: 24275–24287. doi: 10.1074/jbc.m111.229922
[82]  Silverstein KA, Moskal WA Jr, Wu HC, Underwood BA, Graham MA, et al. (2007) Small cysteine-rich peptides resembling antimicrobial peptides have been under-predicted in plants. Plant J 51: 262–280. doi: 10.1111/j.1365-313x.2007.03136.x
[83]  Arondel VV, Vergnolle C, Cantrel C, Kader J (2000) Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana. Plant Sci 157: 1–12. doi: 10.1016/s0168-9452(00)00232-6
[84]  Chen C, Chen G, Hao X, Cao B, Chen Q, et al. (2011) CaMF2, an anther-specific lipid transfer protein (LTP) gene, affects pollen development in Capsicum annuum L. Plant Sci. 181: 439–448. doi: 10.1016/j.plantsci.2011.07.003
[85]  Molina A, Segura A, Garcia-Olmedo F (1993) Lipid transfer proteins (nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens. FEBS Lett 316: 119–122. doi: 10.1016/0014-5793(93)81198-9
[86]  Segura A, Moreno M, Garcia-Olmedo F (1993) Purification and antipathogenic activity of lipid transfer proteins (LTPs) from the leaves of Arabidopsis and spinach. FEBS Lett 332: 243–246. doi: 10.1016/0014-5793(93)80641-7
[87]  NCCLS (2003) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. In: Wayne, editor. NCCLS Document M7-A6. Sixth ed: National Committee for Clinical Laboratory Standards.
[88]  Aaij C, Borst P (1972) The gel electrophoresis of DNA. Biochim Biophys Acta 269: 192–200. doi: 10.1016/0005-2787(72)90426-1
[89]  Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33: W451–454. doi: 10.1093/nar/gki487
[90]  Lomsadze A, Ter-Hovhannisyan V, Chernoff YO, Borodovsky M (2005) Gene identification in novel eukaryotic genomes by self-training algorithm. Nucleic Acids Res 33: 6494–6506. doi: 10.1093/nar/gki937
[91]  Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359. doi: 10.1038/nmeth.1923
[92]  Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27–30. doi: 10.1093/nar/28.1.27
[93]  Porto WF, Souza VA, Nolasco DO, Franco OL (2012) In silico identification of novel hevein-like peptide precursors. Peptides 38: 127–136. doi: 10.1016/j.peptides.2012.07.025
[94]  Kall L, Krogh A, Sonnhammer EL (2007) Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res 35: W429–432. doi: 10.1093/nar/gkm256
[95]  Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, et al. (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33: W116–120. doi: 10.1093/nar/gki442
[96]  Porto WF, Pires AS, Franco OL (2012) CS-AMPPred: An Updated SVM Model for Antimicrobial Activity Prediction in Cysteine-Stabilized Peptides. PLoS One 7: e51444. doi: 10.1371/journal.pone.0051444
[97]  Porto WF, Fernandes FC, Franco OL (2010) An SVM model based on physicochemical properties to predict antimicrobial activity from protein sequences with cysteine knot motifs. Lecture Notes in Computer Science 6268: 59–62. doi: 10.1007/978-3-642-15060-9_6
[98]  Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35: 3375–3382. doi: 10.1093/nar/gkm251
[99]  Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D, et al.. (2007) Comparative protein structure modeling using MODELLER. Curr Protoc Protein Sci Chapter 2: Unit 2 9.
[100]  Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35: W407–410. doi: 10.1093/nar/gkm290
[101]  Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8: 477–486. doi: 10.1007/bf00228148
[102]  Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38: W545–549. doi: 10.1093/nar/gkq366
[103]  Roy A, Yang J, Zhang Y (2012) COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res 40: W471–477. doi: 10.1093/nar/gks372
[104]  Zhang Y, Skolnick J (2005) TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33: 2302–2309. doi: 10.1093/nar/gki524
[105]  Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B, editor. Intermolecular Force. Dordrecht: Reidel. pp. 331–342.
[106]  Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N long (N) method for Ewald sums in large systems. The Journal of Chemical Physics 98: 10089–10092. doi: 10.1063/1.464397
[107]  Miyamoto S, Kollman PA (1992) SETTLE. An analytical version of the SHAKE and RATTLE algorithm for rigid water models. Journal of Computational Chemistry 13: 1463–1472. doi: 10.1002/jcc.540130805
[108]  Hess B, Bekker H, Berendsen HJC (1997) LINCS. A linear constant solver for molecular simulations. Journal of Computational Chemistry 18: 1463–1472. doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.3.co;2-l

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133