[1] | Redgrave P, Prescott TJ, Gurney K (1999) The basal ganglia: a vertebrate solution to the selection problem? Neuroscience 89: : 1009–1023. Available: http://linkinghub.elsevier.com/retrieve/?pii/S0306452298003194. Accessed 29 January 2014.
|
[2] | Hwang EJ (2013) The basal ganglia, the ideal machinery for the cost-benefit analysis of action plans. Front Neural Circuits 7: : 121. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3717509&tool=pmcentrez?&rendertype=abstract. Accessed 6 August 2013.
|
[3] | McGeorge a J, Faull RL (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29: : 503–537. Available: http://www.ncbi.nlm.nih.gov/pubmed/24725?78. Accessed 17 February 2014.
|
[4] | Alexander G, DeLong M, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: : 357–381. Available: http://www.annualreviews.org/doi/pdf/10.?1146/annurev.ne.09.030186.002041. Accessed 25 October 2011.
|
[5] | Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: : 366–375. Available: http://linkinghub.elsevier.com/retrieve/?pii/016622368990074X. Accessed 6 April 2011.
|
[6] | McHaffie JG, Stanford TR, Stein BE, Coizet V, Redgrave P (2005) Subcortical loops through the basal ganglia. Trends Neurosci 28: : 401–407. Available: http://www.ncbi.nlm.nih.gov/pubmed/15982?753. Accessed 27 January 2014.
|
[7] | Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30: : 228–235. Available: http://www.ncbi.nlm.nih.gov/pubmed/17408?758. Accessed 23 January 2014.
|
[8] | Reynolds JNJ, Wickens JR (2002) Dopamine-dependent plasticity of corticostriatal synapses. Neural Networks 15: : 507–521. Available: http://linkinghub.elsevier.com/retrieve/?pii/S089360800200045X. Accessed 25 January 2011.
|
[9] | Lau B, Glimcher PW (2007) Action and outcome encoding in the primate caudate nucleus. J Neurosci 27: : 14502–14514. Available: http://www.ncbi.nlm.nih.gov/pubmed/18160?658. Accessed 19 July 2011.
|
[10] | Doya K, Samejima K, Katagiri K, Kawato M (2002) Multiple model-based reinforcement learning. Neural Comput 14: : 1347–1369. Available: http://www.ncbi.nlm.nih.gov/pubmed/12020?450. Accessed 24 January 2014.
|
[11] | Samejima K, Ueda Y, Doya K, Kimura M (2005) Representation of action-specific reward values in the striatum. Science 310: : 1337–1340. Available: http://www.ncbi.nlm.nih.gov/pubmed/16311?337. Accessed 24 January 2014.
|
[12] | Kim H, Sul JH, Huh N, Lee D, Jung MW (2009) Role of striatum in updating values of chosen actions. J Neurosci 29: : 14701–14712. Available: http://www.ncbi.nlm.nih.gov/pubmed/19940?165. Accessed 22 July 2011.
|
[13] | Pawlak V, Kerr JND (2008) Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 28: : 2435–2446. Available: http://www.ncbi.nlm.nih.gov/pubmed/18322?089. Accessed 25 January 2014.
|
[14] | Pawlak V, Wickens JR, Kirkwood A, Kerr JND (2010) Timing is not Everything: Neuromodulation Opens the STDP Gate. Front Synaptic Neurosci 2: : 146. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3059689&tool=pmcentrez?&rendertype=abstract. Accessed 6 July 2011.
|
[15] | Izhikevich EM (2007) Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb Cortex 17: : 2443–2452. Available: http://www.ncbi.nlm.nih.gov/pubmed/17220?510. Accessed 20 July 2011.
|
[16] | Montague P, Dayan P, Sejnowski TJ (1996) A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J Neurosci 16: : 1936–1947. Available: http://www.jneurosci.org/content/16/5/19?36.short. Accessed 20 October 2011.
|
[17] | Schultz W, Dayan P, Montague PR (1997) A neural substrate of prediction and reward. Science 275: : 1593–1599. Available: http://www.ncbi.nlm.nih.gov/pubmed/90543?47. Accessed 17 February 2014.
|
[18] | Schultz W, Dickinson A (2000) Neuronal coding of prediction errors. Annu Rev Neurosci 23: : 473–500. Available: http://www.ncbi.nlm.nih.gov/pubmed/19176?813. Accessed 22 January 2014.
|
[19] | Daw ND, Doya K (2006) The computational neurobiology of learning and reward. Curr Opin Neurobiol 16: : 199–204. Available: http://www.ncbi.nlm.nih.gov/pubmed/16563?737. Accessed 21 January 2014.
|
[20] | Montague PR, Hyman SE, Cohen JD (2004) Computational roles for dopamine in behavioural control. Nature 431: : 760–767. Available: http://www.ncbi.nlm.nih.gov/pubmed/15483?596. Accessed 20 January 2014.
|
[21] | Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1: : 304–309. Available: http://www.ncbi.nlm.nih.gov/pubmed/10195?164. Accessed 10 February 2014.
|
[22] | Smith Y, Bevan M, Shink E, Bolam J (1998) Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience 86: : 353–387. Available: http://europepmc.org/abstract/MED/988185?3. Accessed 17 May 2013.
|
[23] | Kravitz A V, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci: 1–4. Available: http://www.ncbi.nlm.nih.gov/pubmed/22544?310. Accessed 20 July 2012.
|
[24] | Kreitzer AC, Berke JD (2011) Investigating striatal function through cell-type-specific manipulations. Neuroscience 198: : 19–26. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3221791&tool=pmcentrez?&rendertype=abstract. Accessed 6 March 2013.
|
[25] | Ball KT, Combs TA, Beyer DN (2011) Opposing roles for dopamine D(1)- and D(2)-like receptors in discrete cue-induced reinstatement of food seeking. Behav Brain Res 222: : 390–393. Available: http://www.ncbi.nlm.nih.gov/pubmed/21497?172. Accessed 27 May 2011.
|
[26] | Tai L-H, Lee AM, Benavidez N, Bonci A, Wilbrecht L (2012) Transient stimulation of distinct subpopulations of striatal neurons mimics changes in action value. Nat Neurosci 15: : 1281–1289. Available: http://www.ncbi.nlm.nih.gov/pubmed/22902?719. Accessed 28 January 2013.
|
[27] | Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, et al.. (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466: : 622–626. Available: http://www.nature.com/doifinder/10.1038/?nature09159. Accessed 7 July 2010.
|
[28] | Tsai H-C, Zhang F, Adamantidis A, Stuber GD, Bonci A, et al.. (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324: : 1080–1084. Available: http://www.ncbi.nlm.nih.gov/pubmed/19389?999. Accessed 18 July 2011.
|
[29] | Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74: : 858–873. Available: http://www.ncbi.nlm.nih.gov/pubmed/22681?690. Accessed 21 May 2013.
|
[30] | Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, et al.. (2013) Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493: : 532–536. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3554860&tool=pmcentrez?&rendertype=abstract. Accessed 17 September 2013.
|
[31] | Cohen MX, Frank MJ (2009) Neurocomputational models of basal ganglia function in learning, memory and choice. Behav Brain Res 199: : 141–156. Available: http://www.ncbi.nlm.nih.gov/pubmed/18950?662. Accessed 31 January 2014.
|
[32] | Kress GJ, Yamawaki N, Wokosin DL, Wickersham IR, Shepherd GMG, et al.. (2013) Convergent cortical innervation of striatal projection neurons. Nat Neurosci 16: : 665–667. Available: http://www.ncbi.nlm.nih.gov/pubmed/23666?180. Accessed 26 May 2013.
|
[33] | Crittenden JR, Graybiel AM (2011) Basal Ganglia Disorders Associated with Imbalances in the Striatal Striosome and Matrix Compartments. Front Neuroanat 5: : 59. Available: http://www.ncbi.nlm.nih.gov/pubmed/21941?467. Accessed 24 September 2011.
|
[34] | Fujiyama F, Sohn J, Nakano T, Furuta T, Nakamura KC, et al.. (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33: : 668–677. Available: http://www.ncbi.nlm.nih.gov/pubmed/21314?848. Accessed 12 August 2011.
|
[35] | Houk JC, Adams JL, Barto AG (1995) A model of how the basal ganglia generate and use neural signals that predict reinforcement. Houk JC, Davis JL, Beiser DG, editors MIT Press. Available: http://books.google.com/books?hl=en&lr=&?id=q6RThpQR_aIC&oi=fnd&pg=PA249&dq=A+mod?el+of+how+the+basal+ganglia+generate+and?+use+neural+signals+that+predict+reinfor?cement&ots=zPWtYfGo7n&sig=_hCSGDbgX1FQhU?LRxep68OL14cE.
|
[36] | Sheth SA, Abuelem T, Gale JT, Eskandar EN (2011) Basal ganglia neurons dynamically facilitate exploration during associative learning. J Neurosci 31: : 4878–4885. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3486636&tool=pmcentrez?&rendertype=abstract. Accessed 24 May 2013.
|
[37] | O'Doherty J, Dayan P, Schultz J, Deichmann R, Friston K, et al.. (2004) Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science 304: : 452–454. Available: http://www.ncbi.nlm.nih.gov/pubmed/15087?550. Accessed 18 July 2011.
|
[38] | Lobo M, III HC (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science (80-) 330: : 385–390. Available: http://stke.sciencemag.org/cgi/content/f?ull/sci;330/6002/385. Accessed 26 June 2013.
|
[39] | Oyama K, Hernádi I, Iijima T, Tsutsui K-I (2010) Reward prediction error coding in dorsal striatal neurons. J Neurosci 30: : 11447–11457. Available: http://www.ncbi.nlm.nih.gov/pubmed/20739?566. Accessed 22 July 2011.
|
[40] | Lenz JD, Lobo MK (2013) Optogenetic insights into striatal function and behavior. Behav Brain Res: 1–10. Available: http://www.ncbi.nlm.nih.gov/pubmed/23628?212. Accessed 3 May 2013.
|
[41] | Adamantidis AR, Tsai H–C, Boutrel B, Zhang F, Stuber GD, et al.. (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31: : 10829–10835. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3171183&tool=pmcentrez?&rendertype=abstract. Accessed 28 May 2013.
|
[42] | Szydlowski SN, Pollak Dorocic I, Planert H, Carlén M, Meletis K, et al.. (2013) Target selectivity of feedforward inhibition by striatal fast-spiking interneurons. J Neurosci 33: : 1678–1683. Available: http://www.jneurosci.org/content/33/4/16?78.abstract. Accessed 27 January 2014.
|
[43] | Shen W, Flajolet M, Greengard P, Surmeier DJ (2008) Dichotomous dopaminergic control of striatal synaptic plasticity. Science (80-) 321: : 848–851. Available: http://www.sciencemag.org/content/321/58?90/848.short. Accessed 28 September 2011.
|
[44] | Matsumoto M, Hikosaka O (2007) Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447: : 1111–1115. Available: http://www.ncbi.nlm.nih.gov/pubmed/17522?629. Accessed 24 January 2014.
|
[45] | Bromberg-Martin ES, Matsumoto M, Hong S, Hikosaka O (2010) A pallidus-habenula-dopamine pathway signals inferred stimulus values. J Neurophysiol 104: : 1068–1076. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=2934919&tool=pmcentrez?&rendertype=abstract. Accessed 1 March 2012.
|
[46] | Steinberg EE, Keiflin R, Boivin JR, Witten IB, Deisseroth K, et al.. (2013) A causal link between prediction errors, dopamine neurons and learning. Nat Neurosci 16: : 966–973. Available: http://www.nature.com/doifinder/10.1038/?nn.3413. Accessed 26 May 2013.
|
[47] | Graybiel A, Aosaki T, Flaherty A, Kimura M (1994) The basal ganglia and adaptive motor control. Science (80-) 265: : 1826–1831. Available: http://www.sciencemag.org/content/265/51?80/1826.short. Accessed 15 March 2012.
|
[48] | Nambu A (2011) Somatotopic organization of the primate Basal Ganglia. Front Neuroanat 5: : 26. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3082737&tool=pmcentrez?&rendertype=abstract. Accessed 13 March 2013.
|
[49] | Van Zessen R, Phillips JL, Budygin EA, Stuber GD (2012) Activation of VTA GABA neurons disrupts reward consumption. Neuron 73: : 1184–1194. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3314244&tool=pmcentrez?&rendertype=abstract. Accessed 17 September 2013.
|
[50] | Platt ML, Glimcher PW (1999) Neural correlates of decision variables in parietal cortex. Nature 400: : 233–238. Available: http://www.ncbi.nlm.nih.gov/pubmed/10421?364. Accessed 20 January 2014.
|
[51] | Wang AY, Miura K, Uchida N (2013) The dorsomedial striatum encodes net expected return, critical for energizing performance vigor. Nat Neurosci 16: : 639–647. Available: http://www.ncbi.nlm.nih.gov/pubmed/23584?742. Accessed 21 May 2013.
|
[52] | Charlesworth JD, Warren TL, Brainard MS (2012) Covert skill learning in a cortical-basal ganglia circuit. Nature 486: : 251–255. Available: http://www.ncbi.nlm.nih.gov/pubmed/22699?618. Accessed 12 July 2012.
|
[53] | Ostendorf F, Liebermann D, Ploner CJ (2013) A role of the human thalamus in predicting the perceptual consequences of eye movements. Front Syst Neurosci 7: : 1–12. Available: http://www.frontiersin.org/Systems_Neuro?science/10.3389/fnsys.2013.00010/abstrac?t. Accessed 26 April 2013.
|
[54] | Mengual E, de las Heras S, Erro E, Lanciego JL, Giménez-Amaya JM (1999) Thalamic interaction between the input and the output systems of the basal ganglia. J Chem Neuroanat 16: : 187–200. Available: http://www.ncbi.nlm.nih.gov/pubmed/10422?738. Accessed 17 February 2014.
|
[55] | Sandberg A, Lansner A, Petersson KM, Ekeberg O (2002) A Bayesian attractor network with incremental learning. Network 13: : 179–194. Available: http://www.ncbi.nlm.nih.gov/pubmed/12061?419. Accessed 17 February 2014.
|
[56] | Berthet P, Hellgren-Kotaleski J, Lansner A (2012) Action selection performance of a reconfigurable basal ganglia inspired model with Hebbian-Bayesian Go-NoGo connectivity. Front Behav Neurosci 6: : 65. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3462417&tool=pmcentrez?&rendertype=abstract. Accessed 1 February 2013.
|
[57] | Yang T, Shadlen MN (2007) Probabilistic reasoning by neurons. Nature 447: : 1075–1080. Available: http://www.ncbi.nlm.nih.gov/pubmed/17546?027. Accessed 24 July 2010.
|
[58] | Doya K, Ishii S, Pouget A, Rao RPN (2007) Bayesian Brain. MIT Press.
|
[59] | Deneve S (2008) Bayesian spiking neurons I: inference. Neural Comput 20: : 91–117. Available: http://www.ncbi.nlm.nih.gov/pubmed/18045?002. Accessed 17 February 2014.
|
[60] | Buesing L, Bill J, Nessler B, Maass W (2011) Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking Neurons. PLoS Comput Biol 7: : e1002211. Available: http://dx.plos.org/10.1371/journal.pcbi.?1002211. Accessed 4 November 2011.
|
[61] | Wickens J, Begg A, Arbuthnott G (1996) Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 70: : 1–5. Available: http://www.sciencedirect.com/science/art?icle/pii/030645229500436M. Accessed 20 October 2011.
|
[62] | Reynolds J, Wickens J (2000) Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo. Neuroscience 99: : 199–203. Available: http://www.sciencedirect.com/science/art?icle/pii/S0306452200002736. Accessed 28 September 2011.
|
[63] | Lerner TN, Kreitzer AC (2011) Neuromodulatory control of striatal plasticity and behavior. Curr Opin Neurobiol 21: 322–327. Available: http://www.pubmedcentral.nih.gov/article?render.fcgi?artid=3092792&tool=pmcentrez?&rendertype=abstract. Accessed 27 January 2014.
|